Keras官方中文文档:函数式模型API
\
函数式模型接口
为什么叫“函数式模型”,请查看“Keras新手指南”的相关部分
Keras的函数式模型为Model,即广义的拥有输入和输出的模型,我们使用Model来初始化一个函数式模型
from keras.models import Model
from keras.layers import Input, Dense
a = Input(shape=(32,))
b = Dense(32)(a)
model = Model(inputs=a, outputs=b)
在这里,我们的模型以a为输入,以b为输出,同样我们可以构造拥有多输入和多输出的模型
model = Model(inputs=[a1, a2], outputs=[b1, b3, b3])
常用Model属性
- model.layers:组成模型图的各个层
- model.inputs:模型的输入张量列表
- model.outputs:模型的输出张量列表
Model模型方法
compile
compile(self, optimizer, loss, metrics=None, loss_weights=None, sample_weight_mode=None, weighted_metrics=None, target_tensors=None)
本函数编译模型以供训练,参数有
- optimizer:优化器,为预定义优化器名或优化器对象,参考优化器 
- loss:损失函数,为预定义损失函数名或一个目标函数,参考损失函数 
- metrics:列表,包含评估模型在训练和测试时的性能的指标,典型用法是 - metrics=['accuracy']如果要在多输出模型中为不同的输出指定不同的指标,可像该参数传递一个字典,例如- metrics={'ouput_a': 'accuracy'}
- sample_weight_mode:如果你需要按时间步为样本赋权(2D权矩阵),将该值设为“temporal”。默认为“None”,代表按样本赋权(1D权)。如果模型有多个输出,可以向该参数传入指定sample_weight_mode的字典或列表。在下面 - fit函数的解释中有相关的参考内容。
- weighted_metrics: metrics列表,在训练和测试过程中,这些metrics将由 - sample_weight或- clss_weight计算并赋权
- target_tensors: 默认情况下,Keras将为模型的目标创建一个占位符,该占位符在训练过程中将被目标数据代替。如果你想使用自己的目标张量(相应的,Keras将不会在训练时期望为这些目标张量载入外部的numpy数据),你可以通过该参数手动指定。目标张量可以是一个单独的张量(对应于单输出模型),也可以是一个张量列表,或者一个name->tensor的张量字典。 
- kwargs:使用TensorFlow作为后端请忽略该参数,若使用Theano/CNTK作为后端,kwargs的值将会传递给 K.function。如果使用TensorFlow为后端,这里的值会被传给tf.Session.run 
当为参数传入非法值时会抛出异常
【Tips】如果你只是载入模型并利用其predict,可以不用进行compile。在Keras中,compile主要完成损失函数和优化器的一些配置,是为训练服务的。predict会在内部进行符号函数的编译工作(通过调用_make_predict_function生成函数),
fit
fit(self, x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None)
本函数用以训练模型,参数有:
- x:输入数据。如果模型只有一个输入,那么x的类型是numpy array,如果模型有多个输入,那么x的类型应当为list,list的元素是对应于各个输入的numpy array。如果模型的每个输入都有名字,则可以传入一个字典,将输入名与其输入数据对应起来。 
- y:标签,numpy array。如果模型有多个输出,可以传入一个numpy array的list。如果模型的输出拥有名字,则可以传入一个字典,将输出名与其标签对应起来。 
- batch_size:整数,指定进行梯度下降时每个batch包含的样本数。训练时一个batch的样本会被计算一次梯度下降,使目标函数优化一步。 
- epochs:整数,训练终止时的epoch值,训练将在达到该epoch值时停止,当没有设置initial_epoch时,它就是训练的总轮数,否则训练的总轮数为epochs - inital_epoch 
- verbose:日志显示,0为不在标准输出流输出日志信息,1为输出进度条记录,2为每个epoch输出一行记录 
- callbacks:list,其中的元素是 - keras.callbacks.Callback的对象。这个list中的回调函数将会在训练过程中的适当时机被调用,参考回调函数
- validation_split:0~1之间的浮点数,用来指定训练集的一定比例数据作为验证集。验证集将不参与训练,并在每个epoch结束后测试的模型的指标,如损失函数、精确度等。注意,validation_split的划分在shuffle之后,因此如果你的数据本身是有序的,需要先手工打乱再指定validation_split,否则可能会出现验证集样本不均匀。 
- validation_data:形式为(X,y)或(X,y,sample_weights)的tuple,是指定的验证集。此参数将覆盖validation_spilt。 
- shuffle:布尔值,表示是否在训练过程中每个epoch前随机打乱输入样本的顺序。 
- class_weight:字典,将不同的类别映射为不同的权值,该参数用来在训练过程中调整损失函数(只能用于训练)。该参数在处理非平衡的训练数据(某些类的训练样本数很少)时,可以使得损失函数对样本数不足的数据更加关注。 
- sample_weight:权值的numpy array,用于在训练时调整损失函数(仅用于训练)。可以传递一个1D的与样本等长的向量用于对样本进行1对1的加权,或者在面对时序数据时,传递一个的形式为(samples,sequence_length)的矩阵来为每个时间步上的样本赋不同的权。这种情况下请确定在编译模型时添加了 - sample_weight_mode='temporal'。
- initial_epoch: 从该参数指定的epoch开始训练,在继续之前的训练时有用。 
- steps_per_epoch: 一个epoch包含的步数(每一步是一个batch的数据送入),当使用如TensorFlow数据Tensor之类的输入张量进行训练时,默认的None代表自动分割,即数据集样本数/batch样本数。 
- validation_steps: 仅当steps_per_epoch被指定时有用,在验证集上的step总数。
输入数据与规定数据不匹配时会抛出错误
fit函数返回一个History的对象,其History.history属性记录了损失函数和其他指标的数值随epoch变化的情况,如果有验证集的话,也包含了验证集的这些指标变化情况
evaluate
evaluate(self, x, y, batch_size=32, verbose=1, sample_weight=None)
本函数按batch计算在某些输入数据上模型的误差,其参数有:
- x:输入数据,与 - fit一样,是numpy array或numpy array的list
- y:标签,numpy array 
- batch_size:整数,含义同 - fit的同名参数
- verbose:含义同 - fit的同名参数,但只能取0或1
- sample_weight:numpy array,含义同 - fit的同名参数
本函数返回一个测试误差的标量值(如果模型没有其他评价指标),或一个标量的list(如果模型还有其他的评价指标)。model.metrics_names将给出list中各个值的含义。
如果没有特殊说明,以下函数的参数均保持与fit的同名参数相同的含义
如果没有特殊说明,以下函数的verbose参数(如果有)均只能取0或1
predict
predict(self, x, batch_size=32, verbose=0)
本函数按batch获得输入数据对应的输出,其参数有:
函数的返回值是预测值的numpy array
train_on_batch
train_on_batch(self, x, y, class_weight=None, sample_weight=None)
本函数在一个batch的数据上进行一次参数更新
函数返回训练误差的标量值或标量值的list,与evaluate的情形相同。
test_on_batch
test_on_batch(self, x, y, sample_weight=None)
本函数在一个batch的样本上对模型进行评估
函数的返回与evaluate的情形相同
predict_on_batch
predict_on_batch(self, x)
本函数在一个batch的样本上对模型进行测试
函数返回模型在一个batch上的预测结果
fit_generator
fit_generator(self, generator, steps_per_epoch, epochs=1, verbose=1, callbacks=None, validation_data=None, validation_steps=None, class_weight=None, max_q_size=10, workers=1, pickle_safe=False, initial_epoch=0)
利用Python的生成器,逐个生成数据的batch并进行训练。生成器与模型将并行执行以提高效率。例如,该函数允许我们在CPU上进行实时的数据提升,同时在GPU上进行模型训练
函数的参数是:
- generator:生成器函数,生成器的输出应该为: - 一个形如(inputs,targets)的tuple 
- 一个形如(inputs, targets,sample_weight)的tuple。所有的返回值都应该包含相同数目的样本。生成器将无限在数据集上循环。每个epoch以经过模型的样本数达到 - samples_per_epoch时,记一个epoch结束
 
- steps_per_epoch:整数,当生成器返回 - steps_per_epoch次数据时计一个epoch结束,执行下一个epoch
- epochs:整数,数据迭代的轮数 
- verbose:日志显示,0为不在标准输出流输出日志信息,1为输出进度条记录,2为每个epoch输出一行记录 
- validation_data:具有以下三种形式之一 - 生成验证集的生成器 
- 一个形如(inputs,targets)的tuple 
- 一个形如(inputs,targets,sample_weights)的tuple 
 
- validation_steps: 当validation_data为生成器时,本参数指定验证集的生成器返回次数 
- class_weight:规定类别权重的字典,将类别映射为权重,常用于处理样本不均衡问题。 
- sample_weight:权值的numpy array,用于在训练时调整损失函数(仅用于训练)。可以传递一个1D的与样本等长的向量用于对样本进行1对1的加权,或者在面对时序数据时,传递一个的形式为(samples,sequence_length)的矩阵来为每个时间步上的样本赋不同的权。这种情况下请确定在编译模型时添加了 - sample_weight_mode='temporal'。
- workers:最大进程数 
- max_q_size:生成器队列的最大容量 
- pickle_safe: 若为真,则使用基于进程的线程。由于该实现依赖多进程,不能传递non picklable(无法被pickle序列化)的参数到生成器中,因为无法轻易将它们传入子进程中。 
- initial_epoch: 从该参数指定的epoch开始训练,在继续之前的训练时有用。 
函数返回一个History对象
例子
def generate_arrays_from_file(path):
    while 1:
    f = open(path)
    for line in f:
        # create numpy arrays of input data
        # and labels, from each line in the file
        x1, x2, y = process_line(line)
        yield ({'input_1': x1, 'input_2': x2}, {'output': y})
    f.close()
model.fit_generator(generate_arrays_from_file('/my_file.txt'),
        steps_per_epoch=10000, epochs=10)
evaluate_generator
evaluate_generator(self, generator, steps, max_q_size=10, workers=1, pickle_safe=False)
本函数使用一个生成器作为数据源,来评估模型,生成器应返回与test_on_batch的输入数据相同类型的数据。
函数的参数是:
- generator:生成输入batch数据的生成器 
- val_samples:生成器应该返回的总样本数 
- steps:生成器要返回数据的轮数 
- max_q_size:生成器队列的最大容量 
- nb_worker:使用基于进程的多线程处理时的进程数 
- pickle_safe:若设置为True,则使用基于进程的线程。注意因为它的实现依赖于多进程处理,不可传递不可pickle的参数到生成器中,因为它们不能轻易的传递到子进程中。 
predict_generator
predict_generator(self, generator, steps, max_queue_size=10, workers=1, use_multiprocessing=False, verbose=0)
从一个生成器上获取数据并进行预测,生成器应返回与predict_on_batch输入类似的数据
函数的参数是:
- generator:生成输入batch数据的生成器 
- val_samples:生成器应该返回的总样本数 
- max_q_size:生成器队列的最大容量 
- nb_worker:使用基于进程的多线程处理时的进程数 
- pickle_safe:若设置为True,则使用基于进程的线程。注意因为它的实现依赖于多进程处理,不可传递不可pickle的参数到生成器中,因为它们不能轻易的传递到子进程中。 
艾伯特(http://www.aibbt.com/)国内第一家人工智能门户
Keras官方中文文档:函数式模型API的更多相关文章
- Keras官方中文文档:Keras安装和配置指南(Windows)
		这里需要说明一下,笔者不建议在Windows环境下进行深度学习的研究,一方面是因为Windows所对应的框架搭建的依赖过多,社区设定不完全:另一方面,Linux系统下对显卡支持.内存释放以及存储空间调 ... 
- Keras官方中文文档:关于Keras模型
		关于Keras模型 Keras有两种类型的模型,序贯模型(Sequential)和函数式模型(Model),函数式模型应用更为广泛,序贯模型是函数式模型的一种特殊情况. 两类模型有一些方法是相同的: ... 
- Keras官方中文文档:常见问题与解答
		所属分类:Keras Keras FAQ:常见问题 如何引用Keras? 如何使Keras调用GPU? 如何在多张GPU卡上使用Keras "batch", "epoch ... 
- Keras官方中文文档:keras后端Backend
		所属分类:Keras Keras后端 什么是"后端" Keras是一个模型级的库,提供了快速构建深度学习网络的模块.Keras并不处理如张量乘法.卷积等底层操作.这些操作依赖于某种 ... 
- Keras官方中文文档:序贯模型API
		Sequential模型接口 如果刚开始学习Sequential模型,请首先移步这里阅读文档,本节内容是Sequential的API和参数介绍. 常用Sequential属性 model.layers ... 
- Keras官方中文文档:序贯模型
		快速开始序贯(Sequential)模型 序贯模型是多个网络层的线性堆叠,也就是"一条路走到黑". 可以通过向Sequential模型传递一个layer的list来构造该模型: f ... 
- Keras官方中文文档:Keras安装和配置指南(Linux)
		关于计算机的硬件配置说明 推荐配置 如果您是高校学生或者高级研究人员,并且实验室或者个人资金充沛,建议您采用如下配置: 主板:X299型号或Z270型号 CPU: i7-6950X或i7-7700K ... 
- 学习Python 新去处:Python 官方中文文档
		Python 作为世界上最好用的语言,官方支持的文档一直没有中文.小伙伴们已经习惯了原汁原味的英文文档,但如果有官方中文文档,那么查阅或理解速度都会大大提升.本文将介绍隐藏在 Python 官网的中文 ... 
- ReactNative官方中文文档0.21
		整理了一份ReactNative0.21中文文档,提供给需要的reactnative爱好者.ReactNative0.21中文文档.chm 百度盘下载:ReactNative0.21中文文档 来源: ... 
随机推荐
- redis新手入门,摸不着头脑可以看看<二>
			对<Redis开发与运维>的理解--下文中引号部分来自该书,略有修改 P19. Redis有序集合(图2-1) "Redis有序集合和集合一样也是某种类型元素的集合,不重复.不 ... 
- [Python Study Notes]计算cpu使用率v0.1
			V0.1 更新日志: 1.加入平台判断,支持windows与linux 2.自动清屏显示,显示更加直观 '''''''''''''''''''''''''''''''''''''''''''''''' ... 
- linux打印彩色字
			echo显示带颜色,需要使用参数-e格式如下:echo -e "\033[字背景颜色;文字颜色m字符串\033[0m"例如: echo -e "\033[41;37m T ... 
- golang GET 出现 x509: certificate signed by unknown authority
			我们编写一个Go程序来尝试与这个HTTPS server建立连接并通信. //gohttps/4-https/client1.gopackage main import ( "fmt& ... 
- httping:测量网站延迟
			遇到网络问题的时候,我们一般会先通过 ping 这个工具来了解基本的情况.httping 与 ping 类似,不过它不是发送 ICMP 请求,而是发送 HTTP 请求.利用 httping,我们可以测 ... 
- SSE图像算法优化系列十七:多个图像处理中常用函数的SSE实现。
			在做图像处理的SSE优化时,也会经常遇到一些小的过程.数值优化等代码,本文分享一些个人收藏或实现的代码片段给大家. 一.快速求对数运算 对数运算在图像处理中也是个经常会遇到的过程,特备是在一些数据压缩 ... 
- JaveScript函数(JS知识点归纳六)
			1.函数的基本使用 a)作用:代码的复用,灵活性比较强 b)声明方式:function 名 (形参){函数体} c)调用: 名(实参); d)封装函数--书写一个函数的结构,而且放入一些功能,在需要使 ... 
- 让Python输出更漂亮
			print 默认输出是换行的,如果要实现不换行需要在变量末尾加上 end="": student_age = 18 print("学生的年龄为:", stude ... 
- Windows系统上FFMpeg-PHP的使用
			这几天做项目,其中一个需求是用户上传视频文件到服务器,然后服务器自动截取该视频的一帧作为该视频对应的缩略图,服务器端语言采用php编写,找了半天资料,发现ffmpeg-php可以满足该需求,所以下面简 ... 
- Samba服务器的安装与配置
			Samba服务器主要的功能是实现本地windows系统下方便读写局域网内虚拟机下的文件: Samba与window连接需要使用NetBIOS协议,请确认你的Windows系统已经安装了NetBIOS协 ... 
