题意:你的任务是计算f(a^b)除以n的余数。其中f(0)=f(1)=1,且对于所有非负整数i,f(i+2)=f(i+1)+f(i)。

思路:

由于是模运算,因此整个序列肯定会出现重复序列,所以先找出周期,在利用快速幂求出a^b,

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <map>
#include <vector>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int N = 1000;
int F[N*N+5];
int n;
int T;
void fin_mod()
{
F[0] = 0;
F[1] = 1%n;
for(int i = 2;;i++)
{ F[i] = (F[i-1] + F[i-2])%n;
if(F[i] == F[1] && F[i-1] == F[0])
{
T = i - 1;
break;
}
}
} int pow_mod(ull x,ull n,int mod)
{
if(n==0) return 1%mod;
int ret=pow_mod(x,n/2,mod);
ret=ret*ret%mod;
if(n&1) return ret*x%mod;
else return ret;
} int main()
{
ull a,b;
int t;
scanf("%d",&t);
while(t--)
{
cin>>a>>b>>n;
fin_mod();
int tt = pow_mod(a%T,b,T);
printf("%d\n",F[tt]);
}
return 0;
}

  

例10-1 uva11582(裴波那切数列)的更多相关文章

  1. 【简洁之美】裴波那切数列生成器 python

    裴波那切数列可以用生成器较好的去生成,直接上代码: # 1 控制最大数字版本 def fib(max): x,y = 0,1 while y < max: yield x x,y = y,x+y ...

  2. 【剑指offer】10A--求裴波那切数列的第n项,C++实现

    #本文是牛客网<剑指offer>刷题笔记 1.题目 写入一个函数,输入n,输出裴波那切数列的第n项 2.思路 递归--时间和空间复杂度高 循环--时间和空间复杂度低,通过循环迭代计算第n项 ...

  3. Java程序设计之裴波拉切那数列(兔子一年的数量)

    题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? 1.程序分析: 兔子的规律为数列1,1,2,3,5 ...

  4. 浅谈矩阵加速——以时间复杂度为O(log n)的算法实现裴波那契数列第n项及前n之和使用矩阵加速法的优化求法

    首先请连矩阵乘法乘法都还没有了解的同学简单看一下这篇博客: https://blog.csdn.net/weixin_44049566/article/details/88945949 首先直接暴力求 ...

  5. [矩阵乘法]裴波拉契数列III

    [ 矩 阵 乘 法 ] 裴 波 拉 契 数 列 I I I [矩阵乘法]裴波拉契数列III [矩阵乘法]裴波拉契数列III Description 求数列f[n]=f[n-1]+f[n-2]+1的第N ...

  6. [矩阵乘法]裴波拉契数列II

    [ 矩 阵 乘 法 ] 裴 波 拉 契 数 列 I I [矩阵乘法]裴波拉契数列II [矩阵乘法]裴波拉契数列II Description 形如 1 1 2 3 5 8 13 21 34 55 89 ...

  7. 剑指offer例题——裴波那契数列

    编程题:大家都知道裴波那契数列,现在要求输入一个整数n,请你输出裴波那契数列的第n项(从0开始,第0项为0).n<=39 public class Solution { public int F ...

  8. 菲波那切数列(Fibonacci Number)

    什么是菲波那切数列?自己google一下,面试题里面经常遇到,考试递归算法用的. 在菲波那切数列中用递归不太好.第三种算法最好. 第一 递归算法最差了,不想说.测试一下,当N=6000时,半天出不来数 ...

  9. python 裴伯拉切数列

    裴伯拉切数列:从第三个元素开始,每个元素为该元素前面的两个元素的和. 裴伯拉切数列:0,1,1,2,3,5,8,13,21,34,55...... 求出小于n的裴伯拉切数列. def fibo(n): ...

随机推荐

  1. Flask Session 详解

    会话session ,允许你在不同请求 之间储存信息.这个对象相当于用密钥签名加密的 cookie ,即用户可以查看你的 cookie ,但是如果没有密钥就无法修改它. from flask impo ...

  2. java从网络中下载图片到本地

    public class imageDownload { public static void main(String[] args) { String url = "http://loca ...

  3. 微信支付get_brand_wcpay_request:fail

    最近做了微信支付功能,和后端一起踩坑中,微信一直报错:get_brand_wcpay_request:fail 出现该问题的原因: 1.生成的sign签名有问题 2.支付授权目录配置有问题 在经过仔细 ...

  4. C# 封装miniblink 使用HTML/CSS/JS来构建.Net 应用程序界面和简易浏览器

    MiniBlink的作者是 龙泉寺扫地僧 miniblink是什么?   (抄了一下 龙泉寺扫地僧 写的简洁) Miniblink是一个全新的.追求极致小巧的浏览器内核项目,其基于chromium最新 ...

  5. Css之导航栏学习

    Css: ul { list-style-type:none; margin:; padding:; overflow:hidden; background-color:blue; /*固定在顶部*/ ...

  6. 剑指offer-链表中环的入口节点

    题目描述 一个链表中包含环,请找出该链表的环的入口结点. 解题思路 解决这个问题的第一步是如何确定一个链表中包含环.可以定义两个指针,同时从链表的头结点出发,一个指针一次走一步,另一个一次走两步.如果 ...

  7. 一张图说明 Web Api 参数绑定默认规则

    请求如下: 控制器如下: 慎重说明:不管请求方式是 get 还是 post , 简单类型的参数,如 name 和 id ,其值都是从 url 里面去取. Web API 从 url 还是 body 获 ...

  8. Spring知识点回顾(07)事件发布和监听

    Spring知识点回顾(07)事件发布和监听 1.DemoEvent extends ApplicationEvent { public DemoEvent(Object source, String ...

  9. 面向对象的PHP(5)

    OOP的好处 封装 封装可以隐藏实现细节,使代码模块化,代码重用 继承 继承可以扩展已存在的代码模块(class),代码重用 多态 为了类在继承和派生的时候,保证实例的某一属性正确调用,接口重用 关键 ...

  10. Mysql变量列表

    变量表解释 (https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html)