题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=4710

题解:

容斥,组合
先看看这个方案数的计算:
把 M 个相同的东西分给 N 个人,每个人可以一个都分不到
即把 M 个小球放入 N 个盒子,盒子可以为空。
方案数为 ${C}_{N+M-1}^{N-1}$。
怎么理解如下:
如果现在有 N+m-1 个位置,我们可以在 N-1 个位置放隔板,
并且令相邻的两个隔板(把首尾也看作另外2个隔板)中间的空余位置放小球。
(相邻的两个隔板之间共有 N 个间隙,所以可以把每个间隙依次看做一个盒子。)
则任意一种插隔板的方法都对应一种把小球放入盒子的方法。
所以,方案数为 ${C}_{N+M-1}^{N-1}$

考虑 f[i] 表示有至少有 i 个人一个特产都没分到的方案数。
令 B[j] 表示 j 号特产的个数,共M种特产,n=N-i个人去分特产。
则 ${f[i]}=\prod_{j=1}^{M} {C}_{n+B[j]-1}^{n-1}$。
然后容斥即为:
${ANS} = {f[0]}-{C}_{N}^{1}\times{f[1]}+{C}_{N}^{2}\times{f[2]} –\cdots+\cdots$
那个组合数表示:选出那 i 个一定分不到特产的人的方法数。

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#define _ % P
#define MAXN 2005
#define filein(x) freopen(#x".in","r",stdin);
#define fileout(x) freopen(#x".out","w",stdout);
using namespace std;
const int P=1000000007;
int B[MAXN],C[MAXN][MAXN];
int N,M,ANS;
int main()
{
scanf("%d%d",&N,&M);
for(int i=1;i<=M;i++) scanf("%d",&B[i]);
for(int i=0;i<=2000;i++){
C[i][0]=1;
for(int j=1;j<=i;j++) C[i][j]=(1ll*C[i-1][j-1]+C[i-1][j])_;
}
for(int i=0,n,tmp;i<=N;i++){
n=N-i; tmp=1;
for(int j=1;j<=M;j++)
tmp=(1ll*tmp*C[n+B[j]-1][n-1])_;
tmp=(1ll*tmp*C[N][i])_;
if(i&1) tmp=(-1ll*tmp+P)_;
ANS=(1ll*ANS+tmp)_;
}
printf("%d",ANS);
return 0;
}

●BZOJ 4710 [Jsoi2011]分特产的更多相关文章

  1. BZOJ 4710: [Jsoi2011]分特产 [容斥原理]

    4710: [Jsoi2011]分特产 题意:m种物品分给n个同学,每个同学至少有一个物品,求方案数 对于每种物品是独立的,就是分成n组可以为空,然后可以用乘法原理合起来 容斥容斥 \[ 每个同学至少 ...

  2. BZOJ 4710 [Jsoi2011]分特产 解题报告

    4710 [Jsoi2011]分特产 题意 给定\(n\)个集合,每个集合有相同的\(a_i\)个元素,不同的集合的元素不同.将所有的元素分给\(m\)个不同位置,要求每个位置至少有一个元素,求分配方 ...

  3. bzoj 4710: [Jsoi2011]分特产

    Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望 ...

  4. BZOJ 4710: [Jsoi2011]分特产(容斥)

    传送门 解题思路 首先所有物品是一定要用完的,那么可以按照物品考虑,就是把每种物品分给\(n\)个人,每个人分得非负整数,可以用隔板法计算.设物品有\(m\)个,方案数为\(C(n+m-1,n-1)\ ...

  5. 【BZOJ 4710】 4710: [Jsoi2011]分特产 (容斥原理)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 99  Solved: 65 Description JYY 带 ...

  6. 4710: [Jsoi2011]分特产

    4710: [Jsoi2011]分特产 链接 分析: 容斥原理+隔板法. 代码: #include<cstdio> #include<algorithm> #include&l ...

  7. bzoj4710: [Jsoi2011]分特产 组合+容斥

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 289  Solved: 198[Submit][Status] ...

  8. bzoj4710 [Jsoi2011]分特产(容斥)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 814  Solved: 527[Submit][Status] ...

  9. [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 395  Solved: 262[Submit][Status] ...

随机推荐

  1. Python处理图片缩略图

    CPU 密集型任务和 IO 密集型任务分别选择多进程multiprocessing.Pool.map 和多线程库multiprocessing.dummy.Pool.map import os imp ...

  2. scrapy crawl rules设置

    rules = [ Rule(SgmlLinkExtractor(allow=('/u012150179/article/details'), restrict_xpaths=('//li[@clas ...

  3. hdu 5274 Dylans loves tree

    Dylans loves tree http://acm.hdu.edu.cn/showproblem.php?pid=5274 Time Limit: 2000/1000 MS (Java/Othe ...

  4. Python爬虫基本原理

    爬虫基本原理 1. 什么是爬虫 请求网站并提取数据的自动化程序. 2. 爬虫基本流程 发起请求 通过HTTP库向目标站点发起请求,即发送一个Request,请求可以包含额外的headers等信息,等待 ...

  5. c# 字符串的内存分配和驻留池( 转 )

    刚开始学习C#的时候,就听说CLR对于String类有一种特别的内存管理机制:有时候,明明声明了两个String类的对象,但是他们偏偏却指向同一个实例.如下: string s1 = "he ...

  6. Mysql数据库主从配置

    一.为什么要使用数据库主从架构 一个网站损耗资源最厉害的就是数据库,最易崩溃的也是数据库,而数据库崩溃带来的后果是非常严重的.数据库分为读和写操作,在实际的应用中,读操作的损耗远比写操作多太多,因此读 ...

  7. Struts2 配置文件小结

    每次写的博文都被管理员都被移出首页,好气!还希望有哪位大神可以指点迷津-- struts2 配置文件的 result 节点 result 节点是 action 节点的子节点,他代表着 action 方 ...

  8. Python内置函数(28)——iter

    英文文档: iter(object[, sentinel]) Return an iterator object. The first argument is interpreted very dif ...

  9. C# 解析json数据出现---锘縖

    解析json数据的时候出现 - 锘縖,不知道是不是乱码,反正我是不认识这俩字.后来发现是json的 '[' 字符转换的 网上搜了一下,说的是字符集不匹配,把字符集改为GB2312. 一.贴下处理jso ...

  10. mysql 存储过程 实现数据同步

    数据库 表 发生变化,需要把2.0的表数据 同步到3.0库中去: -- 同步数据存储过程执行 -- 更新留言旧表数据到新表数据中 /*DEFINER:Vector*/ drop procedure i ...