LeetCode之“动态规划”:Maximal Square && Largest Rectangle in Histogram && Maximal Rectangle
1. Maximal Square
题目要求:
Given a 2D binary matrix filled with 0's and 1's, find the largest square containing all 1's and return its area.
For example, given the following matrix:
Return 4.
在GeeksforGeeks有一个解决该问题的方法:
1) Construct a sum matrix S[R][C] for the given M[R][C].
a) Copy first row and first columns as it is from M[][] to S[][]
b) For other entries, use following expressions to construct S[][]
If M[i][j] is 1 then
S[i][j] = min(S[i][j-1], S[i-1][j], S[i-1][j-1]) + 1
Else /*If M[i][j] is 0*/
S[i][j] = 0
2) Find the maximum entry in S[R][C]
3) Using the value and coordinates of maximum entry in S[i], print
sub-matrix of M[][]
构造完‘和矩阵S’后,我们只需求得该矩阵的最大值就可以了。
为什么只需求得该最大值就可以了?而且相同的最大值可能有很多个。细想下式我们就会知道‘和矩阵S’中的每一个值表示的都是从其他节点(本结点左上)到本节点所能构成的最大正方形的边长长度。
S[i][j] = min(S[i][j-1], S[i-1][j], S[i-1][j-1]) + 1
具体的程序如下:
class Solution {
public:
int min(const int a, const int b, const int c)
{
int minVal = (a < b)?a:b;
return (minVal < c)?minVal:c;
}
int maximalSquare(vector<vector<char>>& matrix) {
int rows = matrix.size();
if(rows == )
return ;
int cols = matrix[].size();
if(cols == )
return ;
int maxEdge = ;
vector<vector<int> > sum(rows, vector<int>(cols, ));
for(int i = ; i < rows; i++)
{
if(matrix[i][] == '')
{
sum[i][] = ;
maxEdge = ;
}
}
for(int j = ; j < cols; j++)
{
if(matrix[][j] == '')
{
sum[][j] = ;
maxEdge = ;
}
}
for(int i = ; i < rows; i++)
for(int j = ; j < cols; j++)
{
if(matrix[i][j] == '')
sum[i][j] = ;
else
sum[i][j] = min(sum[i-][j-], sum[i-][j], sum[i][j-]) + ;
if(maxEdge < sum[i][j])
maxEdge = sum[i][j];
}
return maxEdge * maxEdge;
}
};
2. Largest Rectangle in Histogram
题目要求:
Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.

Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].

The largest rectangle is shown in the shaded area, which has area = 10 unit.
For example,
Given height = [2,1,5,6,2,3],
return 10.
这道题目实际上跟动态规划没有什么关系,之所以将其放在这里是因为其跟下一道题关系很大。该题解法参考自一博文,程序如下:
class Solution {
public:
int largestRectangleArea(vector<int>& height) {
vector<int> s;
int sz = height.size();
height.resize(++sz);
int maxArea = ;
int i = ;
while(i < sz)
{
if(s.empty() || height[i] >= height[s.back()])
{
s.push_back(i);
i++;
}
else
{
int t = s.back();
s.pop_back();
maxArea = max(maxArea, height[t] * (s.empty() ? i : i - s.back() - ));
}
}
return maxArea;
}
};
该博文还照题目要求中的例子[2,1,5,6,2,3]解析了这个函数:
首先,如果栈是空的,那么索引i入栈。那么第一个i=0就进去吧。注意栈内保存的是索引,不是高度。然后i++。

然后继续,当i=1的时候,发现h[i]小于了栈内的元素,于是出栈。(由此可以想到,哦,看来stack里面只存放单调递增的索引)
这时候stack为空,所以面积的计算是h[t] * i.t是刚刚弹出的stack顶元素。也就是蓝色部分的面积。

继续。这时候stack为空了,继续入栈。注意到只要是连续递增的序列,我们都要keep pushing,直到我们遇到了i=4,h[i]=2小于了栈顶的元素。

这时候开始计算矩形面积。首先弹出栈顶元素,t=3。即下图绿色部分。

接下来注意到栈顶的(索引指向的)元素还是大于当前i指向的元素,于是出栈,并继续计算面积,桃红色部分。

最后,栈顶的(索引指向的)元素大于了当前i指向的元素,循环继续,入栈并推动i前进。直到我们再次遇到下降的元素,也就是我们最后人为添加的dummy元素0.

同理,我们计算栈内的面积。由于当前i是最小元素,所以所有的栈内元素都要被弹出并参与面积计算。

注意我们在计算面积的时候已经更新过了maxArea。
总结下,我们可以看到,stack中总是保持递增的元素的索引,然后当遇到较小的元素后,依次出栈并计算栈中bar能围成的面积,直到栈中元素小于当前元素。
3. Maximal Rectangle
题目要求:
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.
这道题的解决方法可以借鉴上题求直方图最大面积的方法,即我们把每一列当作直方图的每一列,输入则是每一列连续的‘1’的个数,具体程序如下:
class Solution {
public:
int largestRectangleArea(vector<int>& height) {
vector<int> s;
int sz = height.size();
height.resize(++sz);
int maxArea = ;
int i = ;
while(i < sz)
{
if(s.empty() || height[i] >= height[s.back()])
{
s.push_back(i);
i++;
}
else
{
int t = s.back();
s.pop_back();
maxArea = max(maxArea, height[t] * (s.empty() ? i : i - s.back() - ));
}
}
return maxArea;
}
int maximalRectangle(vector<vector<char>>& matrix) {
int rows = matrix.size();
if(rows == )
return ;
int cols = matrix[].size();
vector<vector<int> > height(rows, vector<int>(cols, ));
for(int i = ; i < rows; i++)
for(int j = ; j < cols; j++)
{
if(matrix[i][j] != '')
height[i][j] = (i == ) ? : height[i-][j] + ;
}
int maxArea = ;
for(int i = ; i < rows; i++)
maxArea = max(maxArea, largestRectangleArea(height[i]));
return maxArea;
}
};
LeetCode之“动态规划”:Maximal Square && Largest Rectangle in Histogram && Maximal Rectangle的更多相关文章
- 47. Largest Rectangle in Histogram && Maximal Rectangle
Largest Rectangle in Histogram Given n non-negative integers representing the histogram's bar height ...
- leetcode@ [84/85] Largest Rectangle in Histogram & Maximal Rectangle
https://leetcode.com/problems/largest-rectangle-in-histogram/ https://leetcode.com/problems/maximal- ...
- 【动态规划】leetcode - Maximal Square
称号: Maximal Square Given a 2D binary matrix filled with 0's and 1's, find the largest square contain ...
- [LeetCode] Largest Rectangle in Histogram O(n) 解法详析, Maximal Rectangle
Largest Rectangle in Histogram Given n non-negative integers representing the histogram's bar height ...
- LeetCode 84--柱状图中最大的矩形( Largest Rectangle in Histogram) 85--最大矩形(Maximal Rectangle)
84题和85五题 基本是一样的,先说84题 84--柱状图中最大的矩形( Largest Rectangle in Histogram) 思路很简单,通过循环,分别判断第 i 个柱子能够延展的长度le ...
- [LeetCode] Maximal Square 最大正方形
Given a 2D binary matrix filled with 0's and 1's, find the largest square containing all 1's and ret ...
- [LeetCode] Largest Rectangle in Histogram 直方图中最大的矩形
Given n non-negative integers representing the histogram's bar height where the width of each bar is ...
- [LeetCode] 84. Largest Rectangle in Histogram 直方图中最大的矩形
Given n non-negative integers representing the histogram's bar height where the width of each bar is ...
- [LeetCode] 221. Maximal Square 最大正方形
Given a 2D binary matrix filled with 0's and 1's, find the largest square containing all 1's and ret ...
随机推荐
- iOS下使状态栏颜色与H5中背景色一致
iOS 中有的页面也能会内嵌WebView,然后WebView中用H5做了一个导航,而iOS 中状态栏的颜色很难调整的与H5中导航颜色一致.如下图所示: 其实出现这种原因,主要是因为使用16进制颜色, ...
- 学习TensorFlow,打印输出tensor的值
在学习TensorFlow的过程中,我们需要知道某个tensor的值是什么,这个很重要,尤其是在debug的时候.也许你会说,这个很容易啊,直接print就可以了.其实不然,print只能打印输出sh ...
- 4.QPixmap,QTransform,绘图函数的使用
新建一个项目Painter MyWidget.h #ifndef MYWIDGET_H #define MYWIDGET_H #include <QWidget> class MyW ...
- Django开发自己的博客系统
好久之前就想做一下自己的博客系统了,但是在网上查了查好像是需要会一些Node.js的相关知识,而且还要安装辣么多的库什么的,就不想碰了.但是我遇到了Django这么一款神器,没想到我的博客系统就这么建 ...
- 在javascript里 string 和 int 类型转换
string 转换为int 类型 (1)tostring()方法 var x=10 a = x.toString() //输出为string类型 alert(typeof(a)); ...
- python使用qq服务器发送邮件
python使用qq服务器发送邮件 直接上代码: #!/usr/bin/python2.7 #-*- coding: UTF-8 -*- # sendmail.py # # init created: ...
- JVM的内存区域模型
首先要明白一个概念,就是JVM的内存区域划分与java的内存区域模型是两个不同的概念,前者指的是在java中jvm会将一个程序划分为哪些块来存储对应的数据,后者是一个更宏观上的j概念,指的是java线 ...
- Mysql SQL Mode详解
Mysql SQL Mode简介 MySQL服务器能够工作在不同的SQL模式下,并能针对不同的客户端以不同的方式应用这些模式.这样,应用程序就能对服务器操作进行量身定制以满足自己的需求.这类模式定义了 ...
- C++ Primer 有感(管理类的指针成员)
C++类的指针成员与其他成员有所不同,指针成员指向一个内存地址,该地址的内存需要我没管理. 我现在分析一下为什么要管理指针成员. 有如下Student类,Student.h如下: [cpp] view ...
- oracle ebs应用产品安全性-数据访问权限集
定义 数据访问权限集是一个重要的.必须设定的系统配置文件选项.对具有相同科目表.日历和期间类型的分类帐及其所有平衡段值或管理段值的定义读写权限,系统管理员将其分配至不同的责任以控制不同的责任对分类帐数 ...