POJ-2516-Minimum Cost(网络流, 最小费用最大流)
链接:
https://vjudge.net/problem/POJ-2516
题意:
Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his sale area there are N shopkeepers (marked from 1 to N) which stocks goods from him.Dearboy has M supply places (marked from 1 to M), each provides K different kinds of goods (marked from 1 to K). Once shopkeepers order goods, Dearboy should arrange which supply place provide how much amount of goods to shopkeepers to cut down the total cost of transport.
It's known that the cost to transport one unit goods for different kinds from different supply places to different shopkeepers may be different. Given each supply places' storage of K kinds of goods, N shopkeepers' order of K kinds of goods and the cost to transport goods for different kinds from different supply places to different shopkeepers, you should tell how to arrange the goods supply to minimize the total cost of transport.
思路:
建图, 但是不能对每个商品同时建图,每个商品矩阵分别建图,同时不满足条件就不要跑费用流了..会T.
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
//#include <memory.h>
#include <queue>
#include <set>
#include <map>
#include <algorithm>
#include <math.h>
#include <stack>
#include <string>
#define MINF 0x3f3f3f3f
using namespace std;
typedef long long LL;
const int MAXN = 50+10;
const int INF = 1e9;
struct Edge
{
int from, to, flow, cap, cost;
Edge(int from, int to, int flow, int cap, int cost)
{
this->from = from;
this->to = to;
this->flow = flow;
this->cap = cap;
this->cost = cost;
}
};
vector<Edge> edges;
vector<int> G[MAXN*MAXN*MAXN];
int Sh[MAXN][MAXN];
int Wo[MAXN][MAXN];
int SumN[MAXN];
int a[MAXN*MAXN];
int Vis[MAXN*MAXN*MAXN], Dis[MAXN*MAXN*MAXN], Pre[MAXN*MAXN*MAXN];
int n, m, k;
int s, t;
void AddEdge(int from, int to, int cap, int cost)
{
edges.push_back(Edge(from, to, 0, cap, cost));
edges.push_back(Edge(to, from, 0, 0, -cost));
int len = edges.size();
G[from].push_back(len-2);
G[to].push_back(len-1);
}
bool SPFA()
{
memset(Dis, MINF, sizeof(Dis));
memset(Vis, 0, sizeof(Vis));
queue<int> que;
Dis[s] = 0;
Vis[s] = 1;
que.push(s);
a[s] = INF;
while (!que.empty())
{
// for (int i = s;i <= t;i++)
// cout << Dis[i] << ' ' ;
// cout << endl;
int u = que.front();
// cout << u << endl;
que.pop();
Vis[u] = 0;
for (int i = 0;i < G[u].size();i++)
{
Edge &e = edges[G[u][i]];
if (e.cap > e.flow && Dis[e.to] > Dis[u]+e.cost)
{
Dis[e.to] = Dis[u]+e.cost;
Pre[e.to] = G[u][i];
a[e.to] = min(a[u], e.cap-e.flow);
if (!Vis[e.to])
{
que.push(e.to);
Vis[e.to] = 1;
}
}
}
}
if (Dis[t] != MINF)
return true;
return false;
}
int CostFlow(int &Flow)
{
int cost = 0;
while (SPFA())
{
// cout << 1 << endl;
// int Min = INF;
// for (int i = t;i != s;i = edges[Pre[i]].from)
// Min = min(Min, edges[Pre[i]].cap-edges[Pre[i]].flow);
// cout << Min << endl;
for (int i = t;i != s;i = edges[Pre[i]].from)
{
edges[Pre[i]].flow += a[t];
edges[Pre[i]^1].flow -= a[t];
// Edge &e = edges[Pre[i]], &ee = edges[Pre[i]^1];
// cout << e.from << ' ' << e.to << ' ' << e.flow << ' ' << e.cap << endl;
// cout << ee.from << ' ' << ee.to << ' ' << ee.flow << ' ' << ee.cap << endl;
// cout << endl;
}
cost += a[t]*Dis[t];
Flow += a[t];
}
return cost;
}
void Init()
{
for (int i = 0;i <= n+m+1;i++)
G[i].clear();
edges.clear();
}
int main()
{
// ios::sync_with_stdio(false);
// cin.tie(0);
while (~scanf("%d %d %d", &n, &m, &k) && (n+m+k))
{
s = 0, t = n+m+1;
for (int i = 1;i <= n;i++)
{
for (int j = 1;j <= k;j++)
scanf("%d", &Sh[i][j]);
}
memset(SumN, 0, sizeof(SumN));
for (int i = 1;i <= m;i++)
{
for (int j = 1;j <= k;j++)
scanf("%d", &Wo[i][j]), SumN[j] += Wo[i][j];
}
int v;
//shop = n*k
//wo = n*k+m*k
int res = 0, sumflow = 0;
bool ok = true;
for (int i = 1;i <= k;i++)
{
Init();
int tmp = 0;
for (int j = 1;j <= n;j++)
{
AddEdge(s, j, Sh[j][i], 0);
tmp += Sh[j][i];
}
if (tmp > SumN[i])
ok = false;
for (int j = 1;j <= n;j++)
{
for (int z = 1;z <= m;z++)
{
scanf("%d", &v);
AddEdge(j, n+z, INF, v);
}
}
for (int j = 1;j <= m;j++)
AddEdge(n+j, t, Wo[j][i], 0);
if (ok)
res += CostFlow(sumflow);
}
if (!ok)
puts("-1");
else
printf("%d\n", res);
}
return 0;
}
POJ-2516-Minimum Cost(网络流, 最小费用最大流)的更多相关文章
- POJ 2516 Minimum Cost (最小费用最大流)
POJ 2516 Minimum Cost 链接:http://poj.org/problem?id=2516 题意:有M个仓库.N个商人.K种物品.先输入N,M.K.然后输入N行K个数,每一行代表一 ...
- POJ - 2516 Minimum Cost(最小费用最大流)
1.K种物品,M个供应商,N个收购商.每种物品从一个供应商运送到一个收购商有一个单位运费.每个收购商都需要K种物品中的若干.求满足所有收购商需求的前提下的最小运费. 2.K种物品拆开来,分别对每种物品 ...
- Minimum Cost 【POJ - 2516】【网络流最小费用最大流】
题目链接 题意: 有N个商家它们需要货物源,还有M个货物供应商,N个商家需要K种物品,每种物品都有对应的需求量,M个商家每种物品都是对应的存货,然后再是K个N*M的矩阵表示了K个物品从供货商运送到商家 ...
- POJ2516 Minimum Cost(最小费用最大流)
一开始我把每个店主都拆成k个点,然后建图..然后TLE.. 看题解= =哦,愚钝了,k个商品是独立的,可以分别跑k次最小费用最大流,结果就是k次总和.. #include<cstdio> ...
- POJ2516 Minimum Cost【最小费用最大流】
题意: 有N个客户,M个仓库,和K种货物.已知每个客户需要每种货物的数量,每个仓库存储每种货物的数量,每个仓库运输各种货物去各个客户的单位费用.判断所有的仓库能否满足所有客户的需求,如果可以,求出最少 ...
- Minimum Cost(最小费用最大流,好题)
Minimum Cost http://poj.org/problem?id=2516 Time Limit: 4000MS Memory Limit: 65536K Total Submissi ...
- POJ 2516 Minimum Cost (网络流,最小费用流)
POJ 2516 Minimum Cost (网络流,最小费用流) Description Dearboy, a goods victualer, now comes to a big problem ...
- Poj 2516 Minimum Cost (最小花费最大流)
题目链接: Poj 2516 Minimum Cost 题目描述: 有n个商店,m个仓储,每个商店和仓库都有k种货物.嘛!现在n个商店要开始向m个仓库发出订单了,订单信息为当前商店对每种货物的需求 ...
- POJ 2516 Minimum Cost(最小费用流)
Description Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his s ...
随机推荐
- 分布式任务队列 Celery —— 详解工作流
目录 目录 前文列表 前言 任务签名 signature 偏函数 回调函数 Celery 工作流 group 任务组 chain 任务链 chord 复合任务 chunks 任务块 mapstarma ...
- Babel编译:类继承
编译前 // 父类 class Fruit { static nutrition = "vitamin" static plant() { console.log('种果树'); ...
- 【EWM系列】SAP EWM中仓库任务WT创建的函数
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[EWM系列]SAP EWM中仓库任务WT创建的 ...
- seanborn使用函数regplot回归分析绘图
可以用regplot(x, y, data)绘制回归图.data参数是DataFram类型,x是其中某一列列名,是即将绘制的图的x坐标,y是其中某一列,是图的y坐标 下面代码是对seaborn内置数据 ...
- 使用itchat完成微信自动回复
import itchat from itchat.content import * # 微信自动回复 @itchat.msg_register([TEXT]) def text_reply(msg) ...
- Java简易实现记事本的打开与保存
记事本的打开与保存 一些总结 * Swing中有时方法不显示,需要把方setVisible(true)放到最后执行 * AWT中的TextArea默认是中间布局 * fileDialog对话框Load ...
- [转帖]Twitter 宣布抛弃 Mesos,全面转向 Kubernetes
Twitter 宣布抛弃 Mesos,全面转向 Kubernetes http://www.itpub.net/2019/05/06/1788/ 事实标准了. 作者 | 阿里云智能高级技术专家 张 ...
- [BZOJ 4668]冷战(带边权并查集+启发式合并)
[BZOJ 4668]冷战(并查集+启发式合并) 题面 一开始有n个点,动态加边,同时查询u,v最早什么时候联通.强制在线 分析 用并查集维护连通性,每个点x还要另外记录tim[x],表示x什么时间与 ...
- 解决keil5中文注释乱码方法
菜单上面的edit-->Configuration-->Editor-->Encoding 选择Chinese GB2312 点击OK即可解决 参考 解决keil和source in ...
- B - 卿学姐与基本法 (离散化+成段更新+区间求和)
卿学姐与基本法 Time Limit: 2000/1000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) Submit S ...