问题描述

The competitors of Bubble Cup X gathered after the competition and discussed what is the best way to get to know the host country and its cities.

After exploring the map of Serbia for a while, the competitors came up with the following facts: the country has V cities which are indexed with numbers from 1 to V, and there are E bi-directional roads that connect the cites. Each road has a weight (the time needed to cross that road). There are N teams at the Bubble Cup and the competitors came up with the following plan: each of the N teams will start their journey in one of the V cities, and some of the teams share the starting position.

They want to find the shortest time T, such that every team can move in these T minutes, and the number of different cities they end up in is at least K (because they will only get to know the cities they end up in). A team doesn't have to be on the move all the time, if they like it in a particular city, they can stay there and wait for the time to pass.

Please help the competitors to determine the shortest time T so it's possible for them to end up in at least K different cities or print -1 if that is impossible no matter how they move.

Note that there can exist multiple roads between some cities.

输入格式

The first line contains four integers: V, E, N and K (1 ≤  V  ≤  600,  1  ≤  E  ≤  20000,  1  ≤  N  ≤  min(V, 200),  1  ≤  K  ≤  N), number of cities, number of roads, number of teams and the smallest number of different cities they need to end up in, respectively.

The second line contains N integers, the cities where the teams start their journey.

Next E lines contain information about the roads in following format: Ai Bi Ti (1 ≤ Ai, Bi ≤ V,  1 ≤ Ti ≤ 10000), which means that there is a road connecting cities Ai and Bi, and you need Ti minutes to cross that road.

输出格式

Output a single integer that represents the minimal time the teams can move for, such that they end up in at least K different cities or output -1 if there is no solution.

If the solution exists, result will be no greater than 1731311.

样例输入

6 7 5 4

5 5 2 2 5

1 3 3

1 5 2

1 6 5

2 5 4

2 6 7

3 4 11

3 5 3

样例输出

3

样例解释

Three teams start from city 5, and two teams start from city 2. If they agree to move for 3 minutes, one possible situation would be the following: Two teams in city 2, one team in city 5, one team in city 3 , and one team in city 1. And we see that there are four different cities the teams end their journey at.

题目大意

给定一个 v个点 e条边的带权无向图,在图上有 n个人,第 i个人位于点 xi,一个人通过一条边需要花费这条边的边权的时间。

现在每个人可以自由地走。求最短多少时间后满足结束后有人的节点数 ≥ m

解析

观察到最后的答案就是走过的最长时间。那么,这就变成了一个最大值最小的问题,可以用二分答案解决。

二分需要的时间mid。因为最后是至少m做城市有人,所以不妨当做是用m个人去匹配m座城市,那么就变成了一个二分图匹配问题。对于每个人,向他所在的城市在mid时间内可以到达的城市连边,这可以用Floyd求出两两最短路得到。然后二分图匹配,如果匹配数大于等于m说明可行。

代码

#include <iostream>
#include <cstdio>
#include <cstring>
#define N 1202
using namespace std;
int v,e,n,m,i,j,k,dis[N][N],g[N][N],pos[N],match[N];
bool vis[N];
int read()
{
char c=getchar();
int w=0;
while(c<'0'||c>'9') c=getchar();
while(c<='9'&&c>='0'){
w=w*10+c-'0';
c=getchar();
}
return w;
}
bool dfs(int x)
{
for(int y=1;y<=v;y++){
if(g[x][y]&&!vis[y]){
vis[y]=1;
if(!match[y]||dfs(match[y])){
match[y]=x;
return 1;
}
}
}
return 0;
}
int hungary()
{
memset(match,0,sizeof(match));
int ans=0;
for(int i=1;i<=n;i++){
memset(vis,0,sizeof(vis));
if(dfs(i)) ans++;
}
return ans;
}
bool check(int x)
{
memset(g,0,sizeof(g));
for(int i=1;i<=n;i++){
for(int j=1;j<=v;j++){
if(dis[pos[i]][j]<=x) g[i][j]=1;
}
}
int ans=hungary();
return (ans>=m);
}
int main()
{
v=read();e=read();n=read();m=read();
for(i=1;i<=n;i++) pos[i]=read();
memset(dis,0x3f,sizeof(dis));
for(i=1;i<=v;i++) dis[i][i]=0;
for(i=1;i<=e;i++){
int u=read(),v=read(),w=read();
dis[u][v]=dis[v][u]=min(dis[u][v],w);
}
for(k=1;k<=v;k++){
for(i=1;i<=v;i++){
for(j=1;j<=v;j++) dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
}
}
int l=0,r=1731311,mid,ans=-1;
while(l<=r){
mid=(l+r)/2;
if(check(mid)){
ans=mid;
r=mid-1;
}
else l=mid+1;
}
printf("%d\n",ans);
return 0;
}

[CF852D] Exploration plan的更多相关文章

  1. 「CF852D」Exploration Plan

    题目描述 给定一张 \(V\) 个点,\(M\) 条边的边带权无向图,有 \(N\) 个人分布在图上的点上,第 \(i\) 个人在 \(x_i\) 这个点上,定义从一个点走到另一个点的时间为所走的路径 ...

  2. 【BubbleCup X】D. Exploration plan

    这个题首先一眼能看出二分答案…… 毕竟连可爱的边界都给你了. 下面就是怎么check 首先预处理跑一遍floyed,预处理出最短路. 用网络流判断能否达到即可. #include<bits/st ...

  3. [codeforces 852 D] Exploration Plan 解题报告 (二分+最大匹配)

    题目链接:http://codeforces.com/problemset/problem/852/D 题目大意: 有V个点,N个队伍,E条边,经过每条边有个时间,告诉你初始N个队伍的位置,求至少有K ...

  4. poj 2594 Treasure Exploration (二分匹配)

    Treasure Exploration Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 6558   Accepted: 2 ...

  5. POJ2594 Treasure Exploration

    Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 8193   Accepted: 3358 Description Have ...

  6. poj 2594 Treasure Exploration(最小路径覆盖+闭包传递)

    http://poj.org/problem?id=2594 Treasure Exploration Time Limit: 6000MS   Memory Limit: 65536K Total ...

  7. Treasure Exploration(二分最大匹配+floyd)

    Treasure Exploration Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 7455   Accepted: 3 ...

  8. POJ2594 Treasure Exploration(最小路径覆盖)

    Treasure Exploration Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 8550   Accepted: 3 ...

  9. 【转】The most comprehensive Data Science learning plan for 2017

    I joined Analytics Vidhya as an intern last summer. I had no clue what was in store for me. I had be ...

随机推荐

  1. ApplicationSettingsBase运用

    先建一个类继承于ApplicationSettingsBase using System; using System.ComponentModel; namespace Concert.Configu ...

  2. Pycharm激活方法(license server方法)

    pycharm所有版本 http://www.jetbrains.com/pycharm/download/previous.html 打开激活窗口 选择 Activate new license w ...

  3. Jmeter---不同线程组的使用介绍(转)

    在添加线程组:发现线程组种类挺多的  翻查资料后对几个工具进行总结: 原本想写三个 在翻阅资料,后发现下面博文比较详情, 本文大部分来自: https://blog.csdn.net/sinat_32 ...

  4. tensorflow2.0 numpy.ndarray 与tenor直接互转

    1.代码参考 import numpy as npimport tensorflow as tf a = np.random.random((5,3)) b = np.random.randint(0 ...

  5. 20191128 Spring Boot官方文档学习(9.9)

    9.9.数据存取 Spring Boot包含许多用于处理数据源的启动器. 9.9.1.配置自定义数据源 要配置自己的DataSource,请在配置中定义该类型的@Bean.Spring Boot可以在 ...

  6. HTTP请求状态码为400时的原因

    2019-11-30 出现这个请求无效说明请求没有进入后台服务器里 原因: (1)前端提交的字段名称或者字段类型和后台的实体类不一样 或者前端提交的参数跟后台需要的参数个数不一致,导致无法封装 (2) ...

  7. Miller-Robin 素数测试法 模板

    测试单个素数,出错概率比计算机本身出错的概率还要低 算法是基于费马小定理(format),二次探测定理(x*x % p == 1 ,若P为素数,则x的解只能是x = 1或者x = p - 1)加上迭代 ...

  8. 关于Pulsar与Kafka

    在本系列的Pulsar和Kafka比较文章中,我将引导您完成我认为重要的几个领域,并且对于人们选择强大,高可用性,高性能的流式消息传递平台至关重要.消息传递模型(Messaging model)是用户 ...

  9. Vue 2.0 入门系列(15)学习 Vue.js 需要掌握的 es6 (2)

    类与模块 类 es6 之前,通常使用构造函数来创建对象 // 构造函数 User function User(username, email) { this.username = username; ...

  10. Luogu p1241 括号序列

    括号序列题目连接 这是一道与dp毫无半点关系的题 本来是去找的题来着,结果并没有找到,然后看到了这道题. (本来以为会是很好写的一道题结果因为题意不清直接原地去世了) 思路很简单,基本没有技术含量. ...