HDU 6656 Kejin Player (期望DP 逆元)
2019 杭电多校 7 1011
题目链接:HDU 6656
比赛链接:2019 Multi-University Training Contest 7
Problem Description
Cuber QQ always envies those Kejin players, who pay a lot of RMB to get a higher level in the game. So he worked so hard that you are now the game designer of this game. He decided to annoy these Kejin players a little bit, and give them the lesson that RMB does not always work.
This game follows a traditional Kejin rule of "when you are level i, you have to pay \(a_i\) RMB to get to level \(i+1\)". Cuber QQ now changed it a little bit: "when you are level \(i\), you pay \(a_i\) RMB, are you get to level \(i+1\) with probability \(p_i\); otherwise you will turn into level \(x_i (x_i\le i)\)".
Cuber QQ still needs to know how much money expected the Kejin players needs to ``ke'' so that they can upgrade from level \(l\) to level \(r\), because you worry if this is too high, these players might just quit and never return again.
Input
The first line of the input is an integer t, denoting the number of test cases.
For each test case, there is two space-separated integers \(n (1\le n\le 500 000)\) and \(q (1\le q\le 500 000)\) in the first line, meaning the total number of levels and the number of queries.
Then follows \(n\) lines, each containing integers \(r_i, s_i, x_i, a_i\) \((1\le r_i\le s_i\le 10^9, 1\le x_i\le i, 0\le a_i\le 10^9)\), space separated. Note that \(p_i\) is given in the form of a fraction \(\frac{r_i}{s_i}\).
The next \(q\) lines are \(q\) queries. Each of these queries are two space-separated integers \(l\) and \(r\) \((1\le l < r\le n+1)\).
The sum of \(n\) and sum of \(q\) from all \(t\) test cases both does not exceed \(10^6\).
Output
For each query, output answer in the fraction form modulo \(10^9+7\), that is, if the answer is \(\frac{P}{Q}\), you should output \(P\cdot Q^{−1}\) modulo \(10^9+7\), where \(Q^{−1}\) denotes the multiplicative inverse of \(Q\) modulo \(10^9+7\).
Sample Input
1
3 2
1 1 1 2
1 2 1 3
1 3 3 4
1 4
3 4
Sample Output
22
12
Solution
题意:
从 \(i\) 级升级到 \(i + 1\) 级需要花费 \(a_i\) RMB,成功的概率为 \(p_i = \frac{r_i}{s_i}\),若失败则降到 \(x_i\) 级,然后给出 \(q\) 个询问求 \(l\) 级升级到 \(r\) 级花费的期望。
题解:
期望DP 逆元
设 \(g(l, r)\) 为 \(l\) 升到 \(r\) 的期望,这种期望满足减法 \(g(l, r) = g(1, r) − g(1, l)\)。因为升级只能一级一级升, 所以要从 \(1\) 升级到 \(r\), 必然要经过 \(l\)。可以降维,用 \(dp[i]\) 表示从 \(1\) 升到 \(i\) 的期望,则 \(g(l, r) = dp[r] − dp[l]\)。
从 \(dp[i]\) 转移至 \(dp[i + 1]\),假设尝试了 \(t\) 次才成功,那么也就是前面 \(t - 1\) 次都是失败的,所以下一状态的花费为当前状态的花费 + 成功的花费 + 失败的花费 + 失败后再次回到当前状态的花费。于是:
\]
又 \(\frac{t - 1}{t} = 1 - \frac{r_i}{s_i}\),即 \(t = \frac{s_i}{r_i}\)
于是状态转移方程为:
\]
Code
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 5e5 + 10;
const ll mod = 1e9 + 7;
ll r[maxn], s[maxn], x[maxn], a[maxn];
ll dp[maxn];
ll qmod(ll a, ll b, ll p) {
ll ans = 1;
while(b) {
if(b & 1) ans = (a * ans) % p;
a = (a * a) % p;
b >>= 1;
}
return ans;
}
int main() {
int T;
cin >> T;
while(T--) {
int n, q;
scanf("%d%d", &n, &q);
for(int i = 1; i <= n; ++i) {
scanf("%lld%lld%lld%lld", &r[i], &s[i], &x[i], &a[i]);
ll t = (s[i] * qmod(r[i], mod - 2, mod)) % mod;
dp[i + 1] = (dp[i] + (t * a[i]) % mod + ((t - 1) * (dp[i] - dp[x[i]])) % mod + mod) % mod;
}
for(int i = 0; i < q; ++i) {
int l, r;
scanf("%d%d", &l, &r);
printf("%lld\n", (dp[r] - dp[l] + mod) % mod);
}
}
return 0;
}
HDU 6656 Kejin Player (期望DP 逆元)的更多相关文章
- 杭电多校HDU 6656 Kejin Player(概率DP)题解
题意: 最低等级\(level\ 1\),已知在\(level\ i\)操作一次需花费\(a_i\),有概率\(p_i\)升级到\(level\ i+1\),有\(1 - p_i\)掉级到\(x_i( ...
- 2019杭电多校第七场 HDU - 6656 Kejin Player——概率&&期望
题意 总共有 $n$ 层楼,在第 $i$ 层花费 $a_i$ 的代价,有 $pi$ 的概率到 $i+1$ 层,否则到 $x_i$($x_i \leq 1$) 层.接下来有 $q$ 次询问,每次询问 $ ...
- HDU 6656 Kejin Player
hdu题面 Time limit 5000 ms Memory limit 524288 kB OS Windows 解题思路 因为升级只能一级一级地升,所以所求期望满足了区间加的性质,可以一级一级地 ...
- 2019 Multi-University Training Contest 7 Kejin Player 期望dp
题目传送门 题意:有n个等级,在每个等级花费$ai$的代价有$pi$的几率升到$i+1$级,$1-pi$的概率降级降到$xi$(xi<=i),给出q次询问,每次询问从$l$级到$r$级的代价的期 ...
- HDU 4405 Aeroplane chess 期望dp
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4405 Aeroplane chess Time Limit: 2000/1000 MS (Java/ ...
- HDU 3853 LOOPS:期望dp【网格型】
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3853 题意: 有一个n*m的网格. 给出在每个格子时:留在原地.向右走一格,向下走一格的概率. 每走一 ...
- HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)
题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...
- hdu多校第七场 1011 (hdu6656) Kejin Player 概率dp
题意: 一个游戏,有许多关,到下一关要花费金钱,做出尝试,有概率成功,若成功则到达下一关,若失败则停在此关或退回到前面某关,询问第l关到第r关的期望费用 题解: 显然,第r关到第l关的费用是dp[r] ...
- HDU 5781 ATM Mechine 期望dp
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5781 ATM Mechine Time Limit: 6000/3000 MS (Java/Othe ...
随机推荐
- 转:Linux设备树(Device Tree)机制
目录 1. 设备树(Device Tree)基本概念及作用 2. 设备树的组成和使用 2.1. DTS和DTSI 2.2. DTC 2.3. DTB 2.4. Bootloader 3. 设备树中d ...
- HTML-参考手册: HTML 事件属性
ylbtech-HTML-参考手册: HTML 事件属性 1.返回顶部 1. HTML 事件属性 全局事件属性 HTML 4 的新特性之一是可以使 HTML 事件触发浏览器中的行为,比方说当用户点击某 ...
- 6、基于highcharts实现的线性拟合,计算部分在java中实现,画的是正态概率图
1.坐标点类 package cn.test.domain; public class Point { double x; double y; public Point(){ } public Poi ...
- WinDows应急响应基础
文件排查 开机启动有无异常文件 msconfig 敏感的文件路径 %WINDIR% %WINDIR%\SYSTEM32\ %TEMP% %LOCALAPPDATA% %APPDATA% 用户目录 新建 ...
- Redis实战与分析
楼主在实现一分布式存储系统时,拟采用Redis来做一个pull的过程来进行多机之间的数据拉取,于在此将redis安装部署过程分享一下,并学习波Redis的内部存储结构,Redis中间的hash环问题, ...
- linux替换rm命令,防止误删
1. 在/home/username/ 目录下新建一个目录,命名为:.trash 2.. 在/home/username/tools/目录下,新建一个shell文件,命名为: remove.sh #! ...
- Django框架(十八)—— CBV源码分析、restful规范、restframework框架
目录 CBV源码分析.restful规范.restframework框架 一.CBV源码分析 1.url层的使用CBV 2.as_view方法 3.view方法 4.dispatch方法(可以在视图层 ...
- Django Model里的__str__以及Meta
举个栗子,注释已经比较详细了 name = models.CharField(max_length=30,verbose_name='标签名称') #max_length=30里的30在mysql以前 ...
- vue中nextTick的使用
最近使用vue的vm.$nextTick的用法比较多,现在整理一下它的用法. 推荐阅读:http://www.ruanyifeng.com/blog/2014/10/event-loop.html ...
- 逻辑回归原理,推导,sklearn应用
目录 逻辑回归原理,推导,及sklearn中的使用 1 从线性回归过渡到逻辑回归 2 逻辑回归的损失函数 2.1 逻辑回归损失函数的推导 2.2 梯度下降法 2.3 正则化 3 用逻辑回归进行多分类 ...