HDU 6656 Kejin Player (期望DP 逆元)
2019 杭电多校 7 1011
题目链接:HDU 6656
比赛链接:2019 Multi-University Training Contest 7
Problem Description
Cuber QQ always envies those Kejin players, who pay a lot of RMB to get a higher level in the game. So he worked so hard that you are now the game designer of this game. He decided to annoy these Kejin players a little bit, and give them the lesson that RMB does not always work.
This game follows a traditional Kejin rule of "when you are level i, you have to pay \(a_i\) RMB to get to level \(i+1\)". Cuber QQ now changed it a little bit: "when you are level \(i\), you pay \(a_i\) RMB, are you get to level \(i+1\) with probability \(p_i\); otherwise you will turn into level \(x_i (x_i\le i)\)".
Cuber QQ still needs to know how much money expected the Kejin players needs to ``ke'' so that they can upgrade from level \(l\) to level \(r\), because you worry if this is too high, these players might just quit and never return again.
Input
The first line of the input is an integer t, denoting the number of test cases.
For each test case, there is two space-separated integers \(n (1\le n\le 500 000)\) and \(q (1\le q\le 500 000)\) in the first line, meaning the total number of levels and the number of queries.
Then follows \(n\) lines, each containing integers \(r_i, s_i, x_i, a_i\) \((1\le r_i\le s_i\le 10^9, 1\le x_i\le i, 0\le a_i\le 10^9)\), space separated. Note that \(p_i\) is given in the form of a fraction \(\frac{r_i}{s_i}\).
The next \(q\) lines are \(q\) queries. Each of these queries are two space-separated integers \(l\) and \(r\) \((1\le l < r\le n+1)\).
The sum of \(n\) and sum of \(q\) from all \(t\) test cases both does not exceed \(10^6\).
Output
For each query, output answer in the fraction form modulo \(10^9+7\), that is, if the answer is \(\frac{P}{Q}\), you should output \(P\cdot Q^{−1}\) modulo \(10^9+7\), where \(Q^{−1}\) denotes the multiplicative inverse of \(Q\) modulo \(10^9+7\).
Sample Input
1
3 2
1 1 1 2
1 2 1 3
1 3 3 4
1 4
3 4
Sample Output
22
12
Solution
题意:
从 \(i\) 级升级到 \(i + 1\) 级需要花费 \(a_i\) RMB,成功的概率为 \(p_i = \frac{r_i}{s_i}\),若失败则降到 \(x_i\) 级,然后给出 \(q\) 个询问求 \(l\) 级升级到 \(r\) 级花费的期望。
题解:
期望DP 逆元
设 \(g(l, r)\) 为 \(l\) 升到 \(r\) 的期望,这种期望满足减法 \(g(l, r) = g(1, r) − g(1, l)\)。因为升级只能一级一级升, 所以要从 \(1\) 升级到 \(r\), 必然要经过 \(l\)。可以降维,用 \(dp[i]\) 表示从 \(1\) 升到 \(i\) 的期望,则 \(g(l, r) = dp[r] − dp[l]\)。
从 \(dp[i]\) 转移至 \(dp[i + 1]\),假设尝试了 \(t\) 次才成功,那么也就是前面 \(t - 1\) 次都是失败的,所以下一状态的花费为当前状态的花费 + 成功的花费 + 失败的花费 + 失败后再次回到当前状态的花费。于是:
\]
又 \(\frac{t - 1}{t} = 1 - \frac{r_i}{s_i}\),即 \(t = \frac{s_i}{r_i}\)
于是状态转移方程为:
\]
Code
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 5e5 + 10;
const ll mod = 1e9 + 7;
ll r[maxn], s[maxn], x[maxn], a[maxn];
ll dp[maxn];
ll qmod(ll a, ll b, ll p) {
ll ans = 1;
while(b) {
if(b & 1) ans = (a * ans) % p;
a = (a * a) % p;
b >>= 1;
}
return ans;
}
int main() {
int T;
cin >> T;
while(T--) {
int n, q;
scanf("%d%d", &n, &q);
for(int i = 1; i <= n; ++i) {
scanf("%lld%lld%lld%lld", &r[i], &s[i], &x[i], &a[i]);
ll t = (s[i] * qmod(r[i], mod - 2, mod)) % mod;
dp[i + 1] = (dp[i] + (t * a[i]) % mod + ((t - 1) * (dp[i] - dp[x[i]])) % mod + mod) % mod;
}
for(int i = 0; i < q; ++i) {
int l, r;
scanf("%d%d", &l, &r);
printf("%lld\n", (dp[r] - dp[l] + mod) % mod);
}
}
return 0;
}
HDU 6656 Kejin Player (期望DP 逆元)的更多相关文章
- 杭电多校HDU 6656 Kejin Player(概率DP)题解
题意: 最低等级\(level\ 1\),已知在\(level\ i\)操作一次需花费\(a_i\),有概率\(p_i\)升级到\(level\ i+1\),有\(1 - p_i\)掉级到\(x_i( ...
- 2019杭电多校第七场 HDU - 6656 Kejin Player——概率&&期望
题意 总共有 $n$ 层楼,在第 $i$ 层花费 $a_i$ 的代价,有 $pi$ 的概率到 $i+1$ 层,否则到 $x_i$($x_i \leq 1$) 层.接下来有 $q$ 次询问,每次询问 $ ...
- HDU 6656 Kejin Player
hdu题面 Time limit 5000 ms Memory limit 524288 kB OS Windows 解题思路 因为升级只能一级一级地升,所以所求期望满足了区间加的性质,可以一级一级地 ...
- 2019 Multi-University Training Contest 7 Kejin Player 期望dp
题目传送门 题意:有n个等级,在每个等级花费$ai$的代价有$pi$的几率升到$i+1$级,$1-pi$的概率降级降到$xi$(xi<=i),给出q次询问,每次询问从$l$级到$r$级的代价的期 ...
- HDU 4405 Aeroplane chess 期望dp
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4405 Aeroplane chess Time Limit: 2000/1000 MS (Java/ ...
- HDU 3853 LOOPS:期望dp【网格型】
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3853 题意: 有一个n*m的网格. 给出在每个格子时:留在原地.向右走一格,向下走一格的概率. 每走一 ...
- HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)
题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...
- hdu多校第七场 1011 (hdu6656) Kejin Player 概率dp
题意: 一个游戏,有许多关,到下一关要花费金钱,做出尝试,有概率成功,若成功则到达下一关,若失败则停在此关或退回到前面某关,询问第l关到第r关的期望费用 题解: 显然,第r关到第l关的费用是dp[r] ...
- HDU 5781 ATM Mechine 期望dp
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5781 ATM Mechine Time Limit: 6000/3000 MS (Java/Othe ...
随机推荐
- Java学习之接口
接口作用:为类提供额外功能(方法) 一.接口定义 interface IDemo { ;//可以简写:int NUM=4; public abstract void show();//可以简写:voi ...
- Nginx网络架构实战学习笔记(五):大访问量优化整体思路、ab压力测试及nginx性能统计模块、nginx单机1w并发优化
文章目录 大访问量优化整体思路 ab压力测试及nginx性能统计模块 ab压力测试及nginx性能统计模块 ab压力测试 nginx性能统计模块 nginx单机1w并发优化 整装待发: socket ...
- <读书笔记>《JS DOM编程艺术》
2016/03/04 12:00 第一二章:JS的简史以及基本语法 1.P11 2.variable 3.P13 等于 4.P13 5.P14 转义字符 6.关联数组不是一个好习惯 7.P18 ...
- vbox出现Failed to opencreate the internal network错误,无法启动虚拟机
vbox出现Failed to opencreate the internal network错误,无法启动虚拟机 标签(空格分隔): 未分类 问题 Failed to open/create the ...
- apache虚拟主机配置及解析
Apache虚拟主机配置及解析 1.修改httpd-vhosts.conf 打开apache(Apache24)/conf/extra/httpd-vhosts.conf文件,添加虚拟主机信息,可以这 ...
- VC2008中处理CStatic控件的单击STN_CLICKED消息
在MFC中,静态文本CStatic控件主要是用来作为标签,即作为注释用的.一般情况下不做消息响应.但是有时特殊情况下会做一些消息响应,比如处理单击事件STN_CLICKED等. 在VC2008下使用M ...
- 慎用margin系列3---IE6下3px bug
当我们想让一段文字出现在一个布局块的右边的时候,我们会让布局块向左浮动,然后把段落设置左布局块宽度大小的左空白.比如左布局块是.a{float:left;height: 110px;width: 28 ...
- android中读取SD卡上的数据
通过Context的openFileInput或者openFileOutput打开的文件输入输出流是操作应用程序的数据文件夹里的文件,这样存储的大小比较有限,为了更好的存取应用程序的大文件数据,应用程 ...
- 《代码大全2》读书笔记 week 7
博主终于继续更<代码大全2>了 (*´・ω・`)⊃,课上老师一再强调读书笔记要写出自己的心得不能简单摘抄,所以我现在基本上只会写一下自己在阅读过程中印象深刻或者有发散思考的地方,字数可能 ...
- 百度地图errorcode: 230 uid: -1 appid -1 msg: APP Scode码校验失败
最近要维护以前师兄的一个android项目,里面用到了百度地图,在我的机器上按照官网的方式获取的SHA1签名+包名申请ak: 然而就是报errorcode: 230 uid: -1 appid -1 ...