#tf.Session.run也接收一个可选的参数options
#能够让你来配置训练时的参数
#run_metadata参数让你能够收集关于训练的元信息
#列如你可以使用这些可选项来追踪执行的信息
import tensorflow as tf
y = tf.matmul([[37.0, -23.0], [1.0, 4.0]], tf.random_uniform([2, 2]))
with tf.Session() as sess:
# Define options for the sess.run() call
options = tf.RunOptions()
options.output_partition_graphs = True
options.trace_level = tf.RunOptions.FULL_TRACE # Define a container for the returned metadata
metadata = tf.RunMetadata() sess.run(y, options=options, run_metadata=metadata) # Print the subgraphs that executed on each device
print(metadata.partition_graphs) # Print the timings of each operation that executed
print(metadata.step_stats)

下面是输出的结果:

2018-02-17 11:12:58.518912: I C:\tf_jenkins\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX AVX2
[node {
name: "MatMul/a"
op: "Const"
device: "/job:localhost/replica:0/task:0/device:CPU:0"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 2
}
dim {
size: 2
}
}
tensor_content: "\000\000\024B\000\000\270\301\000\000\200?\000\000\200@"
}
}
}
}
node {
name: "random_uniform/shape"
op: "Const"
device: "/job:localhost/replica:0/task:0/device:CPU:0"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\002\000\000\000\002\000\000\000"
}
}
}
}
node {
name: "random_uniform/RandomUniform"
op: "RandomUniform"
input: "random_uniform/shape"
device: "/job:localhost/replica:0/task:0/device:CPU:0"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "seed"
value {
i: 0
}
}
attr {
key: "seed2"
value {
i: 0
}
}
}
node {
name: "random_uniform/sub"
op: "Const"
device: "/job:localhost/replica:0/task:0/device:CPU:0"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
tensor_content: "\000\000\200?"
}
}
}
}
node {
name: "random_uniform/mul"
op: "Mul"
input: "random_uniform/RandomUniform"
input: "random_uniform/sub"
device: "/job:localhost/replica:0/task:0/device:CPU:0"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "random_uniform/min"
op: "Const"
device: "/job:localhost/replica:0/task:0/device:CPU:0"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "random_uniform"
op: "Add"
input: "random_uniform/mul"
input: "random_uniform/min"
device: "/job:localhost/replica:0/task:0/device:CPU:0"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "MatMul"
op: "MatMul"
input: "MatMul/a"
input: "random_uniform"
device: "/job:localhost/replica:0/task:0/device:CPU:0"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "_retval_MatMul_0_0"
op: "_Retval"
input: "MatMul"
device: "/job:localhost/replica:0/task:0/device:CPU:0"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "index"
value {
i: 0
}
}
}
library {
}
versions {
producer: 24
}
]
dev_stats {
device: "/job:localhost/replica:0/task:0/device:CPU:0"
node_stats {
node_name: "_SOURCE"
all_start_micros: 1518837178526738
op_start_rel_micros: 12
op_end_rel_micros: 12
all_end_rel_micros: 21
memory {
allocator_name: "cpu"
}
timeline_label: "_SOURCE = NoOp()"
scheduled_micros: 1518837178526691
memory_stats {
}
}
node_stats {
node_name: "MatMul/a"
all_start_micros: 1518837178526765
op_end_rel_micros: 5
all_end_rel_micros: 7
memory {
allocator_name: "cpu"
}
output {
tensor_description {
dtype: DT_FLOAT
shape {
dim {
size: 2
}
dim {
size: 2
}
}
allocation_description {
requested_bytes: 16
allocator_name: "cpu"
ptr: 1903518068800
}
}
}
timeline_label: "MatMul/a = Const()"
scheduled_micros: 1518837178526759
memory_stats {
host_persistent_memory_size: 16
host_persistent_tensor_alloc_ids: -1
}
}
node_stats {
node_name: "random_uniform/shape"
all_start_micros: 1518837178526773
op_start_rel_micros: 1
op_end_rel_micros: 2
all_end_rel_micros: 2
memory {
allocator_name: "cpu"
}
output {
tensor_description {
dtype: DT_INT32
shape {
dim {
size: 2
}
}
allocation_description {
requested_bytes: 8
allocator_name: "cpu"
ptr: 1903518066368
}
}
}
timeline_label: "random_uniform/shape = Const()"
scheduled_micros: 1518837178526772
memory_stats {
host_persistent_memory_size: 8
host_persistent_tensor_alloc_ids: -1
}
}
node_stats {
node_name: "random_uniform/sub"
all_start_micros: 1518837178526780
op_end_rel_micros: 1
all_end_rel_micros: 1
memory {
allocator_name: "cpu"
}
output {
tensor_description {
dtype: DT_FLOAT
shape {
}
allocation_description {
requested_bytes: 4
allocator_name: "cpu"
ptr: 1903518066240
}
}
}
timeline_label: "random_uniform/sub = Const()"
scheduled_micros: 1518837178526775
memory_stats {
host_persistent_memory_size: 4
host_persistent_tensor_alloc_ids: -1
}
}
node_stats {
node_name: "random_uniform/min"
all_start_micros: 1518837178526782
op_end_rel_micros: 1
all_end_rel_micros: 2
memory {
allocator_name: "cpu"
}
output {
tensor_description {
dtype: DT_FLOAT
shape {
}
allocation_description {
requested_bytes: 4
allocator_name: "cpu"
ptr: 1903518069120
}
}
}
timeline_label: "random_uniform/min = Const()"
scheduled_micros: 1518837178526781
memory_stats {
host_persistent_memory_size: 4
host_persistent_tensor_alloc_ids: -1
}
}
node_stats {
node_name: "random_uniform/RandomUniform"
all_start_micros: 1518837178526785
op_start_rel_micros: 1
op_end_rel_micros: 11
all_end_rel_micros: 12
memory {
allocator_name: "cpu"
total_bytes: 16
peak_bytes: 16
live_bytes: 16
allocation_records {
alloc_micros: 1518837178526792
alloc_bytes: 16
}
allocation_records {
alloc_micros: 1518837178526870
alloc_bytes: -16
}
}
output {
tensor_description {
dtype: DT_FLOAT
shape {
dim {
size: 2
}
dim {
size: 2
}
}
allocation_description {
requested_bytes: 16
allocated_bytes: 16
allocator_name: "cpu"
allocation_id: 1
has_single_reference: true
ptr: 1903518118336
}
}
}
timeline_label: "random_uniform/RandomUniform = RandomUniform(random_uniform/shape)"
scheduled_micros: 1518837178526776
memory_stats {
}
}
node_stats {
node_name: "random_uniform/mul"
all_start_micros: 1518837178526798
op_start_rel_micros: 1
op_end_rel_micros: 11
all_end_rel_micros: 12
memory {
allocator_name: "cpu"
}
output {
tensor_description {
dtype: DT_FLOAT
shape {
dim {
size: 2
}
dim {
size: 2
}
}
allocation_description {
requested_bytes: 16
allocated_bytes: 16
allocator_name: "cpu"
allocation_id: 1
ptr: 1903518118336
}
}
}
timeline_label: "random_uniform/mul = Mul(random_uniform/RandomUniform, random_uniform/sub)"
scheduled_micros: 1518837178526797
memory_stats {
}
}
node_stats {
node_name: "random_uniform"
all_start_micros: 1518837178526812
op_end_rel_micros: 8
all_end_rel_micros: 9
memory {
allocator_name: "cpu"
}
output {
tensor_description {
dtype: DT_FLOAT
shape {
dim {
size: 2
}
dim {
size: 2
}
}
allocation_description {
requested_bytes: 16
allocated_bytes: 16
allocator_name: "cpu"
allocation_id: 1
ptr: 1903518118336
}
}
}
timeline_label: "random_uniform = Add(random_uniform/mul, random_uniform/min)"
scheduled_micros: 1518837178526810
memory_stats {
}
}
node_stats {
node_name: "MatMul"
all_start_micros: 1518837178526823
op_end_rel_micros: 45
all_end_rel_micros: 47
memory {
allocator_name: "cpu"
total_bytes: 16
peak_bytes: 16
live_bytes: 16
allocation_records {
alloc_micros: 1518837178526826
alloc_bytes: 16
}
}
output {
tensor_description {
dtype: DT_FLOAT
shape {
dim {
size: 2
}
dim {
size: 2
}
}
allocation_description {
requested_bytes: 16
allocated_bytes: 16
allocator_name: "cpu"
allocation_id: 1
has_single_reference: true
ptr: 1903518061312
}
}
}
timeline_label: "MatMul = MatMul(MatMul/a, random_uniform)"
scheduled_micros: 1518837178526821
memory_stats {
}
}
node_stats {
node_name: "_retval_MatMul_0_0"
all_start_micros: 1518837178526872
op_start_rel_micros: 1
op_end_rel_micros: 3
all_end_rel_micros: 5
memory {
allocator_name: "cpu"
}
timeline_label: "_retval_MatMul_0_0 = _Retval(MatMul)"
scheduled_micros: 1518837178526870
memory_stats {
}
}
}

128、TensorFlow元数据MetaData的更多相关文章

  1. WCF技术剖析之二十六:如何导出WCF服务的元数据(Metadata)[扩展篇]

    原文:WCF技术剖析之二十六:如何导出WCF服务的元数据(Metadata)[扩展篇] 通过<实现篇>对WSDL元素和终结点三要素的之间的匹配关系的介绍,我们知道了WSDL的Binding ...

  2. WCF技术剖析之二十六:如何导出WCF服务的元数据(Metadata)[实现篇]

    原文:WCF技术剖析之二十六:如何导出WCF服务的元数据(Metadata)[实现篇] 元数据的导出就是实现从ServiceEndpoint对象向MetadataSet对象转换的过程,在WCF元数据框 ...

  3. 数据库元数据MetaData

    本篇介绍数据库方面的元数据(MetaData)的有关知识.元数据在建立框架和架构方面是特别重要的知识,再下一篇我们仿造开源数据库工具类DbUtils就要使用数据库的元数据来创建自定义JDBC框架. 在 ...

  4. 【收藏】关于元数据(Metadata)和元数据管理,这是我的见过最全的解读!

    本文主要从元数据的定义.作用.元数据管理现状.管理标准和元数据管理功能等方面讲述了我对元数据(Metadata)和元数据管理的认知及理解. 元数据管理 一.元数据的定义 按照传统的定义,元数据(Met ...

  5. 元数据metadata 对IO有多大影响

    日志文件系统(journaling file systems)可防止系统崩溃时导致的数据不一致问题.对文件系统元数据(metadata)的更改都被保存在一份单独的日志里,当发生 系统崩溃时可以根据日志 ...

  6. 元数据(meta-data)

    本章所介绍的元数据的知识,可能在定制系统时会用到.因为那是后需要修改底层框架的一些内容 一.元数据的定义 在AndroidManifest.xml中如下书写: <activity android ...

  7. 元数据Metadata

    元数据是什么? 元数据(Metadata),又称中介数据.中继数据,为描述数据的数据(data about data),主要是描述数据属性(property)的信息,用来支持如指示存储位置.历史数据. ...

  8. 元数据MetaData(五)

    JDBC的元数据接口有: DatabaseMetaData数据库级 ResultSetMetaData结果集级 一.DatabaseMetaData 在对数据源进行连接以后,得到一个Connectio ...

  9. Android MediaMetadataRetriever 读取多媒体文件信息,元数据(MetaData)

    音乐播放器通常需要获取歌曲的专辑.作者.标题.年代等信息,将这些信息显示到UI界面上. 1.一种方式:解析媒体文件   命名空间:android.media.MediaMetadataRetrieve ...

随机推荐

  1. airtestUI简单操作

    touch 判断坐标位置 如touch((500, 600), duration=1) swipe 滑动位置 wait 等待画面出现 exists 判断画面中是否存在某个图片 test 调用输入法,输 ...

  2. python函数-基础知识

    一.含义函数是程序内的“小程序” 二.示例 #!/usr/bin/env python #coding:utf-8 def hello(): print('Hello world!') print(' ...

  3. HackGame2 writeup

    网址:http://hackgame.blackbap.org/ 第一关 突破客户端:无论输入什么密码都会提示"密码不能为空",使用浏览器检查网页元素会发现提交时会触发 javas ...

  4. PHP 中的 $this, static , self ,parent 等等关键字的总结

    先说结论: self 和 __CLASS__,都是对当前类的静态引用,取决于定义当前方法所在的类.也就是说,self 写在哪个类里面, 它引用的就是谁.$this 指向的是实际调用时的对象,也就是说, ...

  5. 三连击 P1008 洛谷 python写法

    三连击 P1008 洛谷 题意 将\(1,2, \cdots,9\)共9个数分成3组,分别组成3个三位数,且使这3个三位数构成1:2:3的比例,试求出所有满足条件的3个三位数. 解题思路 这里我使用了 ...

  6. 一个阿里云apache服务器配置两个或多个域名forLinux

    一个阿里云apache服务器配置两个或多个域名for Linux: 默认已经配置好了阿里云提供的一键web安装,可以参考:http://www.42iot.com/?id=8 修改/alidata/s ...

  7. 浅谈格雷码(Grey Code)在信息学竞赛中的应用

    1.格雷码的概念 1.性质 格雷码(Grey Code),又叫循环二进制码或反射二进制码,是一种编码方式,它的基本特点是任意两个相邻的格雷码只有一位二进制数不同. 常用的二进制数与格雷码间的转换关系如 ...

  8. jdk 1.7 新增

    二进制整数 JDK7提供了二进制整数的类型,只要以0b开头即可.int a = 0b0101; 下划线分隔符 针对特别长的数字,读懂它令人头疼,这时候用下划线分割数字,可增加代码可读性.long a ...

  9. Gorgeous Sequence(线段树)

    Gorgeous Sequence Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Othe ...

  10. docker可视化集中管理工具shipyard安装部署

    docker可视化集中管理工具shipyard安装部署 Shipyard是在Docker Swarm实现对容器.镜像.docker集群.仓库.节点进行管理的web系统. 1.Shipyard功能 Sh ...