洛谷 P2015 二叉苹果树 题解
裸的树上背包:
设f[u][i]表示在以u为子树的树种选择i条边的最大值,则:f[u][i]=max(f[u][i],f[u][i-j-1]+f[v][k]+u到v的边权);
#include <bits/stdc++.h>
using namespace std;
struct littlestar{
int to;
int nxt;
int w;
}star[];
int head[],cnt;
void add(int u,int v,int w)
{
star[++cnt].to=v;
star[cnt].nxt=head[u];
star[cnt].w=w;
head[u]=cnt;
}
int f[][];
int d[];
int n,q;
void dfs(int u,int fa)
{
for(int i=head[u];i;i=star[i].nxt){
int v=star[i].to;
if(v==fa) continue;
dfs(v,u);
d[u]+=d[v]+;
for(int j=min(d[u],q);j>=;j--){
for(int k=min(d[v],j-);k>=;k--){
f[u][j]=max(f[u][j],f[u][j-k-]+f[v][k]+star[i].w);
}
}
}
}
int main()
{
cin>>n>>q;
for(int i=;i<n;i++)
{
int x,y,w;
scanf("%d%d%d",&x,&y,&w);
add(x,y,w);
add(y,x,w);
}
dfs(,);
cout<<f[][q];
}
洛谷 P2015 二叉苹果树 题解的更多相关文章
- 洛谷 P2015 二叉苹果树 (树上背包)
洛谷 P2015 二叉苹果树 (树上背包) 一道树形DP,本来因为是二叉,其实不需要用树上背包来干(其实即使是多叉也可以多叉转二叉),但是最近都刷树上背包的题,所以用了树上背包. 首先,定义状态\(d ...
- 洛谷p2015二叉苹果树&yzoj1856多叉苹果树题解
二叉 多叉 有一棵苹果树,如果树枝有分叉,可以是分多叉,分叉数k>=0(就是说儿子的结点数大于等于0)这棵树共有N个结点(叶子点或者树枝分叉点),编号为1~N,树根编号一定是1.我们用一根树枝两 ...
- 洛谷 P2015 二叉苹果树(codevs5565) 树形dp入门
dp这一方面的题我都不是很会,所以来练(xue)习(xi),大概把这题弄懂了. 树形dp就是在原本线性上dp改成了在 '树' 这个数据结构上dp. 一般来说,树形dp利用dfs在回溯时进行更新,使用儿 ...
- 洛谷 P2015 二叉苹果树 && caioj1107 树形动态规划(TreeDP)2:二叉苹果树
这道题一开始是按照caioj上面的方法写的 (1)存储二叉树用结构体,记录左儿子和右儿子 (2)把边上的权值转化到点上,离根远的点上 (3)用记忆化搜索,枚举左右节点分别有多少个点,去递归 这种写法有 ...
- 洛谷P2015 二叉苹果树
题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...
- 洛谷P2015 二叉苹果树(树状dp)
题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...
- 洛谷 P2015 二叉苹果树
老规矩,先放题面 题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端 ...
- 洛谷—— P2015 二叉苹果树
https://www.luogu.org/problem/show?pid=2015 题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点 ...
- 洛谷P2015二叉苹果树
传送门啦 树形 $ dp $ 入门题,学树形 $ dp $ 的话,可以考虑先做这个题. $ f[i][j] $ 表示在 $ i $ 这棵子树中选 $ j $ 个苹果的最大价值. include #in ...
随机推荐
- spring boot 项目打包后无法通过命令行传入参数
java -jar .\tk-provider.jar --spring.profiles.active=test 本想用测试环境的配置文件运行项目可项目启动时一直是使用dev配置文件运行. java ...
- 信息提示框:MessageBox
一 函数原型及参数 function MessageBox(hWnd: HWND; Text, Caption: PChar; Type: Word): Integer; 1.参数列表 hW ...
- [BZOJ5249][九省联考2018]IIIDX:线段树+贪心
分析 GXZlegend orz 构造出一组合法的解并不是难事,但是我们需要输出的是字典序最大的解. 字典序最大有另一种理解方式,就是让越小的数尽量越靠后. 我们从树的根结点出发,从1开始填数,构造出 ...
- vue 移动端的开发
一:cli 的安装: cnpm install -g @vue/cli默认是安装在如下目录:C:\Users\xiaocj\AppData\Roaming\npm\node_modules\@vue ...
- linux文档与目录的相关命令
Linux文件系统结构 Linux目录结构的组织形式和Windows有很大的不同.首先Linux没有“盘(C盘.D盘.E盘)”的概念.已经建立文件系统的硬盘分区被挂载到某一个目录下,用户通过操作目录来 ...
- Arch linux(UEFI+GPT)安装及后续优化教程
Arch Linux安装过程中需要从远程存储库获取软件包,电脑需要有效的互联网连接. 1.联网 查看是否有网 ping www.baidu.com 同步时间 timedatectl set-ntp t ...
- perfecto使用
总配置 application.properties env.resources=src/main/resources/common #配置resource文件所在目录,如.loc定位文件 resou ...
- [C#菜鸟]C# Hook (三) Windows常用消息大全
表A-1 Windows消息分布 消息范围 说 明 0 - WM_USER – 1 系统消息 WM_USER - 0x7FFF 自定义窗口类整数消息 WM_APP - 0xBFFF 应用程序自定义消 ...
- 集成ShareSdk一键分享和第三方登录
在Mob官网http://mob.com/注册,创建应用,下载SDK,申请APP_key 根据官网开发指南导入SDK到你的项目中: 在assets/ShareSDk.xml中修改你的APP_key p ...
- flutter 屏幕宽高 状态栏高度
MediaQuery.of(context) 包含了一些屏幕的属性: size : 一个包含宽度和高度的对象,单位是dp print(MediaQuery.of(context).size); //输 ...