During tea-drinking, princess, amongst other things, asked why has such a good-natured and cute Dragon imprisoned Lpl in the Castle? Dragon smiled enigmatically and answered that it is a big secret. After a pause, Dragon added:

— We have a contract. A rental agreement. He always works all day long. He likes silence. Besides that, there are many more advantages of living here in the Castle. Say, it is easy to justify a missed call: a phone ring can't reach the other side of the Castle from where the phone has been left. So, the imprisonment is just a tale. Actually, he thinks about everything. He is smart. For instance, he started replacing incandescent lamps with energy-saving lamps in the whole Castle...

Lpl chose a model of energy-saving lamps and started the replacement as described below. He numbered all rooms in the Castle and counted how many lamps in each room he needs to replace.

At the beginning of each month, Lpl buys mm energy-saving lamps and replaces lamps in rooms according to his list. He starts from the first room in his list. If the lamps in this room are not replaced yet and Lpl has enough energy-saving lamps to replace all lamps, then he replaces all ones and takes the room out from the list. Otherwise, he'll just skip it and check the next room in his list. This process repeats until he has no energy-saving lamps or he has checked all rooms in his list. If he still has some energy-saving lamps after he has checked all rooms in his list, he'll save the rest of energy-saving lamps for the next month.

As soon as all the work is done, he ceases buying new lamps. They are very high quality and have a very long-life cycle.

Your task is for a given number of month and descriptions of rooms to compute in how many rooms the old lamps will be replaced with energy-saving ones and how many energy-saving lamps will remain by the end of each month.

Input

Each input will consist of a single test case.

The first line contains integers nn and m (1 \le n \le 100000, 1 \le m \le 100)m(1≤n≤100000,1≤m≤100) — the number of rooms in the Castle and the number of energy-saving lamps, which Lpl buys monthly.

The second line contains nn integers k_1, k_2, ..., k_nk1​,k2​,...,kn​
(1 \le k_j \le 10000, j = 1, 2, ..., n)(1≤kj​≤10000,j=1,2,...,n) — the number of lamps in the rooms of the Castle. The number in position jj is the number of lamps in jj-th room. Room numbers are given in accordance with Lpl's list.

The third line contains one integer q (1 \le q \le 100000)q(1≤q≤100000) — the number of queries.

The fourth line contains qq integers d_1, d_2, ..., d_qd1​,d2​,...,dq​
(1 \le d_p \le 100000, p = 1, 2, ..., q)(1≤dp​≤100000,p=1,2,...,q) — numbers of months, in which queries are formed.

Months are numbered starting with 11; at the beginning of the first month Lpl buys the first m energy-saving lamps.

Output

Print qq lines.

Line pp contains two integers — the number of rooms, in which all old lamps are replaced already, and the number of remaining energy-saving lamps by the end of d_pdp​ month.

Hint

Explanation for the sample:

In the first month, he bought 44 energy-saving lamps and he replaced the first room in his list and remove it. And then he had 11 energy-saving lamps and skipped all rooms next. So, the answer for the first month is 1,1------11,1−−−−−−1 room's lamps were replaced already, 11 energy-saving lamp remain.

样例输入复制

5 4
3 10 5 2 7
10
5 1 4 8 7 2 3 6 4 7

样例输出复制

4 0
1 1
3 6
5 1
5 1
2 0
3 2
4 4
3 6
5 1
#include <iostream>
#include<cstdio>
#define INF 0x3f3f3f3f
using namespace std;
const int maxn =+;
int a[maxn],b[maxn];
int sumv[maxn << ];
struct node
{
int x,y;
};
node lamp[maxn];
void pushup(int o)
{
sumv[o]=min(sumv[o<<],sumv[o<<|]);
}
void build(int o,int l,int r)
{
if(l==r)
{
sumv[o]=a[l];
return ;
}
int mid=(l+r) >> ;
build(o<<,l,mid);
build(o<<|,mid+,r);
pushup(o);
} void change(int o,int l,int r,int q,int v)
{
if(l==r)
{
sumv[o]=v;
return ;
}
int mid=(l+r)>>;
if(q<=mid) change(o<<,l,mid,q,v);
else
change(o<<|,mid+,r,q,v);
pushup(o);
} int find1(int o,int l,int r,int k)
{
if(sumv[o]>k) return ;
if(l==r)
{
return l;
}
int mid=(l+r)>>;
if(sumv[o<<]<=k) return find1(o<<,l,mid,k);
else if(sumv[o<<|]<=k) return find1(o<<|,mid+,r,k);
} int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
int q;
scanf("%d",&q);
int maxnum=;
for(int i=;i<=q;i++)
{
scanf("%d",&b[i]);
maxnum=max(maxnum,b[i]);
}
build(,,n);
int num1=,num2=,cnt;
for(int i=;i<=maxnum;i++)
{
if(num1<n)
num2+=m;
while(cnt=find1(,,n,num2))
{
num2-=a[cnt];
change(,,n,cnt,INF);
num1++;
}
lamp[i].x=num1,lamp[i].y=num2;
}
for(int i=;i<=q;i++)
printf("%d %d\n",lamp[b[i]].x,lamp[b[i]].y);
return ;
}

Lpl and Energy-saving Lamps的更多相关文章

  1. CF GYM 100703B Energy Saving

    题意:王子每月买m个灯泡给n个房间换灯泡,如果当前有的灯泡数够列表的第一个房间换的就全换,直到灯泡不够为止,给出q个查询,查询x月已经换好几个房子,手里还剩多少灯泡. 解法:水题……小模拟. 代码: ...

  2. ACM-ICPC 2018 南京赛区网络预赛 G. Lpl and Energy-saving Lamps(二分+线段树区间最小)

    During tea-drinking, princess, amongst other things, asked why has such a good-natured and cute Drag ...

  3. 计蒜客 30996 - Lpl and Energy-saving Lamps - [线段树][2018ICPC南京网络预赛G题]

    题目链接:https://nanti.jisuanke.com/t/30996 During tea-drinking, princess, amongst other things, asked w ...

  4. 南京网络赛G-Lpl and Energy【线段树】

    During tea-drinking, princess, amongst other things, asked why has such a good-natured and cute Drag ...

  5. 计蒜客 30996.Lpl and Energy-saving Lamps-线段树(区间满足条件最靠左的值) (ACM-ICPC 2018 南京赛区网络预赛 G)

    G. Lpl and Energy-saving Lamps 42.07% 1000ms 65536K   During tea-drinking, princess, amongst other t ...

  6. Ultra-Thin LED Downlight Selection: 6 Things

    LED Decorative Light Manufacturer    description: ultra-thin LED downlight features can maintain the ...

  7. LED Decorative Light Supplier Introduction - LED Track Light Products

    LED Decorative Light Supplier    introduction: LED track light is a track light with LED as the ligh ...

  8. LED Decorative Light Manufacturer - Led Wall Lamp Performance Characteristics

    LED Decorative Light Manufacturer    introduction: LED wall lamp is a light-emitting diode as a ligh ...

  9. 【总结】在VirtualBox上面安装Mac的注意事项

    看此文之前 http://www.crifan.com/category/work_and_job/virtual_machine/virtualbox-virtual_machine/ 此文仅仅是针 ...

随机推荐

  1. SpringBoot之初体验

    一.SpringBoot 介绍 1.1 SpringBoot 使命 在之前我们学习 Spring 时,我们了解到 Spring 最根本的使命就是 简化Java开发.而 SpringBoot 的出现也有 ...

  2. Django【第26篇】:中介模型以及优化查询以及CBV模式

    中介模型以及优化查询以及CBV模式 一.中介模型:多对多添加的时候用到中介模型 自己创建的第三张表就属于是中介模型 class Article(models.Model): ''' 文章表 ''' t ...

  3. SpringBoot中资源初始化加载的几种方式

    一.问题 在平时的业务模块开发过程中,难免会需要做一些全局的任务.缓存.线程等等的初始化工作,那么如何解决这个问题呢?方法有多种,但具体又要怎么选择呢? 二.资源初始化 1.既然要做资源的初始化,那么 ...

  4. vue组件学习(二)

    父子组件之间的数据传递, 父传给子: 直接在组件上传,如:<count :number="2"> (冒号和不要冒号的区别,有冒号会自动转为相应的类型)在名为count的 ...

  5. java面向对象复习之一

    目的: 复习如何实现代码的逻辑思路: 复习类的封装: 复习类和对象的创建使用和封装: 练习: 实现功能:人到超市买东西 抽出三个类: 人 超市 东西: 功能点: 买: 它们之间的联系:东西包含于超市 ...

  6. RedisTemplate访问Redis数据结构(前言)

    Redis五种基本数据结构 redis提供键值对的形式对数据进行存储.支持五种数据类型:String(字符串),List(链表),Hash(散列),Set(无序集合),ZSet(有序集合).下面是网上 ...

  7. Move Controller UE4键位

    工作中需要,就总结了一下,如下图:

  8. 关于scroll,client,innear,avail,offset等的理解

    在写实例理解scrollWidth,clientWidth,innearWidth,availWidth及offsetWidth等的时候,意外的又发现了margin值合并的问题,在这里同时记录下 1. ...

  9. 手机H5设计尺寸

    手机型号 导航栏和状态栏的高度 宽度 高度 可视区域高度 iPhone 4 (4, 4S) 64px 320px 480px 416px iPhone 5 (5c, 5s) 64px 320px 56 ...

  10. Qt之zip压缩/解压缩(QuaZIP)

    摘要: 简述 QuaZIP是使用Qt/C++对ZLIB进行简单封装的用于压缩及解压缩ZIP的开源库.适用于多种平台,利用它可以很方便的将单个或多个文件打包为zip文件,且打包后的zip文件可以通过其它 ...