机器学习分类算法之K近邻(K-Nearest Neighbor)
一、概念
KNN主要用来解决分类问题,是监督分类算法,它通过判断最近K个点的类别来决定自身类别,所以K值对结果影响很大,虽然它实现比较简单,但在目标数据集比例分配不平衡时,会造成结果的不准确。而且KNN对资源开销较大。
二、计算
通过K近邻进行计算,需要:
1、加载打标好的数据集,然后设定一个K值;
2、计算预测对象与打标对象的欧式距离,
欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式:
二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离:
三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离:

两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的欧氏距离:

import math
import operator def get_distance(vect_test, vect_train):
distance = 0
for i in range(len(vect_test)):
distance = pow((vect_test[i] - vect_train[i]), 2)
return math.sqrt(distance) def get_neighbor(vect_test, train_vect_set, k):
distance = []
for vect_train in train_vect_set:
dist = get_distance(vect_test, vect_train)
distance.append((dist, vect_train))
distance.sort(key=operator.itemgetter(0))
neighbors = []
for i in range(k):
neighbors.append(distance[i][1])
return neighbors def get_result(neighbors):
votes = {}
for neighbor in neighbors:
vote = neighbor[-1]
if vote in votes:
votes[vote] += 1
else:
votes[vote] = 1
vote_order = sorted(votes.items(), key=operator.itemgetter(1), reverse=True)
return vote_order[0][0] def k_nearest_neighbor(vect_test, vect_train, k):
neighbors = get_neighbor(vect_test, vect_train, k)
result = get_result(neighbors)
print(result) if __name__ == '__main__':
vect_train = [[1, 1, 1, 'a'], [2, 2, 2, 'b'], [1, 1, 3, 'a'], [4, 4, 4, 'b'], [0, 0, 0, 'a'], [4, 5, 4, 'b']]
vect_test = [5, 5, 5]
k_nearest_neighbor(vect_test, vect_train, 3)
机器学习分类算法之K近邻(K-Nearest Neighbor)的更多相关文章
- K近邻(k-Nearest Neighbor,KNN)算法,一种基于实例的学习方法
1. 基于实例的学习算法 0x1:数据挖掘的一些相关知识脉络 本文是一篇介绍K近邻数据挖掘算法的文章,而所谓数据挖掘,就是讨论如何在数据中寻找模式的一门学科. 其实人类的科学技术发展的历史,就一直伴随 ...
- k近邻法(k-nearest neighbor, k-NN)
一种基本分类与回归方法 工作原理是:1.训练样本集+对应标签 2.输入没有标签的新数据,将新的数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本最相似数据(最近邻)的分类标签. 3.一般 ...
- k近邻法( k-nearnest neighbor)
基本思想: 给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的k个实例,这k个实例的多数属于某个类,就把该输入实例分为这个类 距离度量: 特征空间中两个实例点的距离是两个实例点相似 ...
- 机器学习:分类算法性能指标之ROC曲线
在介绍ROC曲线之前,先说说混淆矩阵及两个公式,因为这是ROC曲线计算的基础. 1.混淆矩阵的例子(是否点击广告): 说明: TP:预测的结果跟实际结果一致,都点击了广告. FP:预测结果点击了,但是 ...
- 第三章 K近邻法(k-nearest neighbor)
书中存在的一些疑问 kd树的实现过程中,为何选择的切分坐标轴要不断变换?公式如:x(l)=j(modk)+1.有什么好处呢?优点在哪?还有的实现是通过选取方差最大的维度作为划分坐标轴,有何区别? 第一 ...
- DNS通道检测 国外学术界研究情况——研究方法:基于流量,使用机器学习分类算法居多,也有使用聚类算法的;此外使用域名zif low也有
http://www.ijrter.com/papers/volume-2/issue-4/dns-tunneling-detection.pdf <DNS Tunneling Detectio ...
- 机器学习算法之K近邻算法
0x00 概述 K近邻算法是机器学习中非常重要的分类算法.可利用K近邻基于不同的特征提取方式来检测异常操作,比如使用K近邻检测Rootkit,使用K近邻检测webshell等. 0x01 原理 ...
- K近邻算法小结
什么是K近邻? K近邻一种非参数学习的算法,可以用在分类问题上,也可以用在回归问题上. 什么是非参数学习? 一般而言,机器学习算法都有相应的参数要学习,比如线性回归模型中的权重参数和偏置参数,SVM的 ...
- KNN (K近邻算法) - 识别手写数字
KNN项目实战——手写数字识别 1. 介绍 k近邻法(k-nearest neighbor, k-NN)是1967年由Cover T和Hart P提出的一种基本分类与回归方法.它的工作原理是:存在一个 ...
随机推荐
- 一款基于jQuery Ajax的等待效果
特别提示:本人博客部分有参考网络其他博客,但均是本人亲手编写过并验证通过.如发现博客有错误,请及时提出以免误导其他人,谢谢!欢迎转载,但记得标明文章出处:http://www.cnblogs.com/ ...
- libusb获取usb设备的idVendor(vid),idProduct(pid),以及Serial Number
发表于2015/6/23 21:55:11 4594人阅读 最近在做关于usb设备的项目,用到了libusb,发现关于这个的函数库的介绍,讲解很少,下面仅仅是简单展示一些基本的使用方法,以备后用. ...
- js实现两个从input获取到的数字相加引发的问题
从input中获取到的数据是文本类型的,如果不转化类型直接相加会变成字符串的相加. 使用Number()函数可以解决这个问题,如下 var c = Number(a) + Number(b)
- 1. JDK 、 JRE 、JVM有什么区别和联系?
首先,我们分别对这三者进行阐述. JVM :英文名称(Java Virtual Machine),就是我们耳熟能详的 Java 虚拟机.它只认识 xxx.class 这种类型的文件,它能够将 clas ...
- 修改web项目发布路径
Eclipse中用Tomcat发布的Web项目,更改其部署路径 我的Eclipse的工作目录是D:/workspace先配置Tomcat 选择你的tomcat版本 点击next 这里先不要把项目添加进 ...
- 十八、RF中selenium2library构造函数中参数解释
def __init__(self, timeout=5.0, implicit_wait=0.0, ...
- ERROR:imshow、Mat、waitkey找不到标识符(opencv)
可以发现imshow.Mat.waitkey这三个都是opencv相关的. 在添加了相关库文件后还是有问题. #include "stdafx.h" #include <st ...
- 2018 icpc 徐州
A 矩阵树定理可以用于最小生成树计数,最直观的做法就是求个mst,再用矩阵树定理求最小生成树个数,但是n<=1e5,显然不是o(n^3)可以做出来的. 考虑随机数据生成器,固定1e5的边,但是边 ...
- node初始化配置no
原文链接:https://blog.csdn.net/jianleking/article/details/79130667 引言: 很久没有在windows上配过node, 记得以前node环境变量 ...
- keepalive + nginx 搭建高可用集群动态网站
环境准备: 两台节点部署keepalived,并且设为互为主从,实现高可用. 两台从节点部署nginx以及相关组件,作为真实服务器实现动态网站上线. 一.MASTER(BACKUP)节点下载keepa ...