【GDOI2018模拟7.9】期末考试
题目
分析
如果我们确定最后的成绩公布日期t,那么就可以贪心来求出最小的不愉快度:
首先,那些希望的日期小于t的同学,会产生不愉快度,这个用前缀和可以来处理,
对于课程,我们要将大于t的课程全部拖到t,
可以考虑有A、B操作,
首先我们知道,操作的总数是固定的
当A>=B时,尽量选B会最优,于是,对于将大于t的课程全部用B操作拖到t。
当A<=B时,尽量选A会最优,那么由于A有数量限制,所以剩下的选B。
这些就可以用前缀和来处理(笨菜鸟无知,用了权值线段树)。
这个贪心的时间复杂度为O(1)。
所以枚举t即可。
另:
由于t的最优值为单峰函数,也可以用三分。
#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
const long long maxlongint=2147483647;
const int mo=1000000007;
const int N=100000;
using namespace std;
long long ss[N*6][2],a,b,c,si[N*6][2],ans=maxlongint*maxlongint;
int n,m,tot;
void put(int v,int l,int r,int x,int y)
{
if(l==r)
{
si[v][y]++;
ss[v][y]+=x;
return;
}
int mid=(l+r)/2;
if(x<=mid) put(v*2,l,mid,x,y);
else put(v*2+1,mid+1,r,x,y);
ss[v][y]=ss[v*2][y]+ss[v*2+1][y];
si[v][y]=si[v*2][y]+si[v*2+1][y];
}
long long find(int v,int l,int r,int x,int y,int z)
{
if(x>y) return 0;
if(l==x && y==r)
{
return ss[v][z];
}
int mid=(l+r)/2;
if(y<=mid) return find(v*2,l,mid,x,y,z);
else
if(x>mid) return find(v*2+1,mid+1,r,x,y,z);
else
return find(v*2,l,mid,x,mid,z)+find(v*2+1,mid+1,r,mid+1,y,z);
}
long long finds(int v,int l,int r,int x,int y,int z)
{
if(x>y) return 0;
if(l==x && y==r)
{
return si[v][z];
}
int mid=(l+r)/2;
if(y<=mid) return finds(v*2,l,mid,x,y,z);
else
if(x>mid) return finds(v*2+1,mid+1,r,x,y,z);
else
return finds(v*2,l,mid,x,mid,z)+finds(v*2+1,mid+1,r,mid+1,y,z);
}
long long get(long long t)
{
long long xx=finds(1,1,N,1,t-1,0)*t-find(1,1,N,1,t-1,0);
if(xx && ans/xx<=c) return maxlongint*maxlongint;
long long sum=xx*c;
if(b<=a)
{
sum+=(find(1,1,N,t+1,N,1)-finds(1,1,N,t+1,N,1)*t)*b;
}
else
{
long long zy=finds(1,1,N,1,t-1,1)*t-find(1,1,N,1,t-1,1),be=find(1,1,N,t+1,N,1)-finds(1,1,N,t+1,N,1)*t;
if(zy>=be) sum+=be*a;
else
{
sum+=zy*a+b*(be-zy);
}
}
return sum;
}
int main()
{
scanf("%lld%lld%lld%d%d",&a,&b,&c,&n,&m);
for(int i=1,x;i<=n;i++)
{
scanf("%d",&x);
put(1,1,N,x,0);
}
for(int i=1,x;i<=m;i++)
{
scanf("%d",&x);
put(1,1,N,x,1);
}
for(int i=1;i<=N;i++) ans=min(ans,get(i));
printf("%lld",ans);
}
【GDOI2018模拟7.9】期末考试的更多相关文章
- python期末考试复习
期末考试复习 补修的python跟着大一一起学,考试肯定不会出难,于是就敲了一些代码,把他们放到博客上,来记录一下 代码都是一段一段的,且python代码不是很多,所以我都写到了一个文件里,作为练习 ...
- 复旦大学2015--2016学年第二学期高等代数II期末考试情况分析
一.期末考试成绩班级前几名 胡晓波(90).杨彦婷(88).宋卓卿(85).唐指朝(84).陈建兵(83).宋沛颖(82).王昊越(81).白睿(80).韩沅伯(80).王艺楷(80).张漠林(80) ...
- 复旦大学2014--2015学年第二学期(14级)高等代数II期末考试第八大题解答
八.(本题10分) 设 $A,B$ 为 $n$ 阶半正定实对称阵, 求证: $AB$ 可对角化. 分析 证明分成两个步骤: 第一步, 将 $A,B$ 中的某一个简化为合同标准形来考虑问题, 这是矩 ...
- 复旦大学2015--2016学年第一学期高等代数I期末考试情况分析
一.期末考试成绩班级前几名 胡晓波(93).宋沛颖(92).张舒帆(91).姚人天(90).曾奕博(90).杨彦婷(90).白睿(88).唐指朝(87).谢灵尧(87).蔡雪(87) 二.总成绩计算方 ...
- 复旦大学2014--2015学年第二学期高等代数II期末考试情况分析
一.期末考试成绩班级前几名 钱列(100).王华(92).李笑尘(92).金羽佳(91).李卓凡(91).包振航(91).董麒麟(90).张钧瑞(90).陆毕晨(90).刘杰(90).黄成晗(90). ...
- 复旦大学2014--2015学年第一学期高等代数I期末考试情况分析
一.期末考试成绩班级前几名 金羽佳(92).包振航(91).陈品翰(91).孙浩然(90).李卓凡(85).张钧瑞(84).郭昱君(84).董麒麟(84).张诚纯(84).叶瑜(84) 二.总成绩计算 ...
- nyoj 757 期末考试【优先队列+贪心】
期末考试 时间限制:1000 ms | 内存限制:65535 KB 难度:2 描述 马上就要考试了,小T有许多作业要做,而且每个老师都给出来了作业要交的期限,如果在规定的期限内没 交作业就会扣 ...
- 复旦大学2016--2017学年第一学期高等代数I期末考试情况分析
一.期末考试成绩班级前十名 宁盛臻(100).朱民哲(92).徐钰伦(86).范凌虎(85).沈伊南(84).何陶然(84).丁知愚(83).焦思邈(83).董瀚泽(82).钱信(81) 二.总成绩计 ...
- 2012 B 中国近现代史纲要》课程期末考试试卷
湖南人文科技学院2013年3月公共课 2011级<中国近现代史纲要>课程期末考试试卷B 考核方式:(开卷) 考试时量: ...
- 2012 A 《中国近现代史纲要》课程期末考试试卷
湖南人文科技学院2012—2013学年第1学期公共课 2011级<中国近现代史纲要>课程期末考试试卷 考核方式:(开卷) ...
随机推荐
- [转帖]U盘安装centos 的方法
通过U盘或CD/DVD装centos7,出现“dracut-initqueue timeout..."解决办法 1.在用CD/DVD挂载centos7镜像安装系统时,出现“dracut- ...
- [转帖]jdk8 Metaspace 调优
jdk8 Metaspace 调优 https://blog.csdn.net/bolg_hero/article/details/78189621 转帖 简介 从JDK8开始,永久代(PermGen ...
- Hadoop系列读书笔记
<Hadoop应用架构>是Orilley旗下精品系列的图书 Hadoop序列化 Thrift 不支持内部压缩 不能分片 缺少MapReduce的原生支持 Protocol Buffers ...
- springboot 用redis缓存整合spring cache注解,使用Json序列化和反序列化。
springboot下用cache注解整合redis并使用json序列化反序列化. cache注解整合redis 最近发现spring的注解用起来真的是很方便.随即产生了能不能吧spring注解使用r ...
- Python 入门 之 包
Python 入门 之 包 1.包 (1)什么是包? 文件夹下具有_ init.py _的文件夹就是一个包 (2)包的作用: 管理模块(文件化) (3)包的导入: 导入: 启动文件要和包文件是同级 绝 ...
- jinja2介绍
jinja2介绍 jinja2是Flask作者开发的一个模板系统,起初是仿django模板的一个模板引擎,为Flask提供模板支持,由于其灵活,快速和安全等优点被广泛使用. jinja2的优点 jin ...
- Codeforces 1201C. Maximum Median
传送门 看到中位数考虑先把数排序一下 然后有个显然的贪心,一个数增加后一定不能比下一个数大,不然我们直接增加下一个数显然更优 所以初始时的中位数操作后也是中位数 那么我们只要考虑中间再往后怎么加使得答 ...
- 福建工程学院第十四届ACM校赛G题题解
外传:编剧说了不玩游戏不行 题意: 有n个石堆,我每次只能从某一堆中取偶数个石子,你取奇数个,我先手,先不能操作的人输.问最后谁能赢. 思路: 这个题仔细想想,就发现,取奇数的人有巨大的优势,因为假设 ...
- C++ 二阶构造模式
1.如何判断构造函数的执行结果? 构造函数没有返回值,所以不能通过返回值来判断是构造函数是否构造成功. 如果给构造函数强行加入一个返回值,用来表示是否构造成功.这样确实能够反映出构造的结果,但是不够优 ...
- SpringCloudGateWay之限流
一.引言在高并发系统中,经常需要限制系统中的电流化妆.一方面是防止大量的请求使服务器过载,导致服务不可用,另一方面是防止网络攻击.常用的限流方法,如hystrix.应用线程池隔离.超过线程池的负载和g ...