[USACO07DEC]Sightseeing Cows

Description

Farmer John has decided to reward his cows for their hard work by taking them on a tour of the big city! The cows must decide how best to spend their free time.

Fortunately, they have a detailed city map showing the L (2 ≤ L ≤ 1000) major landmarks (conveniently numbered 1.. L) and the P (2 ≤ P ≤ 5000) unidirectional cow paths that join them. Farmer John will drive the cows to a starting landmark of their choice, from which they will walk along the cow paths to a series of other landmarks, ending back at their starting landmark where Farmer John will pick them up and take them back to the farm. Because space in the city is at a premium, the cow paths are very narrow and so travel along each cow path is only allowed in one fixed direction.

While the cows may spend as much time as they like in the city, they do tend to get bored easily. Visiting each new landmark is fun, but walking between them takes time. The cows know the exact fun values Fi (1 ≤ Fi ≤ 1000) for each landmark i.

The cows also know about the cowpaths. Cowpath i connects landmark L_1_i to L_2_i (in the direction L_1_i -> L_2_i ) and requires time Ti (1 ≤ Ti ≤ 1000) to traverse.

In order to have the best possible day off, the cows want to maximize the average fun value per unit time of their trip. Of course, the landmarks are only fun the first time they are visited; the cows may pass through the landmark more than once, but they do not perceive its fun value again. Furthermore, Farmer John is making the cows visit at least two landmarks, so that they get some exercise during their day off.

Help the cows find the maximum fun value per unit time that they can achieve.

Input

  • Line 1: Two space-separated integers: L and P
  • Lines 2..L+1: Line i+1 contains a single one integer: Fi
  • Lines L+2..L+P+1: Line L+i+1 describes cow path i with three space-separated integers: L_1_i , L_2_i , and Ti

Output

  • Line 1: A single number given to two decimal places (do not perform explicit rounding), the maximum possible average fun per unit time, or 0 if the cows cannot plan any trip at all in accordance with the above rules.

Sample Input

5 7

30

10

10

5

10

1 2 3

2 3 2

3 4 5

3 5 2

4 5 5

5 1 3

5 2 2

Sample Output

6.00

题意概述:

给定一张有向图,每个点求出一个权值\(fun[i]\),每条边有一个权值\(time[i]\)。求图中的一个环,使得“环上各点的权值和”/“环上各边的权值和”最大。输出这个最大值。

显然的0/1分数规划

每次二分出最大值,重新建边。由一般的0/1分数规划思路,我们需要确定环上是否有一个环是正环,但是这样不容易判断。所以我们把环的权值取反,这样就可以通过判断负环来\(check\)了。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int read()
{
int x=0,w=1;char ch=getchar();
while(ch>'9'||ch<'0') {if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*w;
}
int n,m,cnt,flag;
double inf=2000000000;
int head[1010],x[50010],y[50010],vis[1010];
double a[1010],z[50010],dis[1010];
struct node{
int to,next;double v;
}edge[10010];
void add(int x,int y,double z)
{
cnt++;edge[cnt].to=y;edge[cnt].v=z;edge[cnt].next=head[x];head[x]=cnt;
}
void spfa(int k)
{
vis[k]=1;
for(int i=head[k];i;i=edge[i].next)
{
int v=edge[i].to;
if(dis[v]>dis[k]+edge[i].v)
{
if(vis[v]) {flag=1;return;}
dis[v]=dis[k]+edge[i].v;
spfa(v);if(flag) return;
}
}
vis[k]=0;
}
bool check(double k)
{
cnt=0;flag=0;for(int i=1;i<=n;i++)head[i]=vis[i]=0,dis[i]=inf;
for(int i=1;i<=m;i++) add(x[i],y[i],k*z[i]-a[x[i]]);
for(int i=1;i<=n;i++){spfa(i);if(flag)return true;}
return false;
}
int main()
{
n=read();m=read();double l=0,r=0,mid;
for(int i=1;i<=n;i++) scanf("%lf",&a[i]),r+=a[i];
for(int i=1;i<=m;i++) x[i]=read(),y[i]=read(),scanf("%lf",&z[i]);
while(r-l>1e-4)
{
mid=(l+r)/2;
if(check(mid)) l=mid;
else r=mid;
}
printf("%.2lf",r);
}

[USACO07DEC]Sightseeing Cows(负环,0/1分数规划)的更多相关文章

  1. Contest20140710 loop bellman-ford求负环&&0/1分数规划

    loop|loop.in|loop.out 题目描述: 给出一个有向带权图,权为边权,求一个简单回路,使其平均边权最小. 简单回路指不多次经过同一个点的回路. 输入格式: 第一行两个整数,表示图的点数 ...

  2. P2868 [USACO07DEC]Sightseeing Cows G

    题意描述 Sightseeing Cows G 给定一张有向图,图中每个点都有点权 \(a_i\),每条边都有边权 \(e_i\). 求图中一个环,使 "环上个点权之和" 除以 & ...

  3. bzoj3232圈地游戏——0/1分数规划+差分建模+判环

    Description DZY家的后院有一块地,由N行M列的方格组成,格子内种的菜有一定的价值,并且每一条单位长度的格线有一定的费用. DZY喜欢在地里散步.他总是从任意一个格点出发,沿着格线行走直到 ...

  4. Bzoj1486/洛谷P3199 最小圈(0/1分数规划+spfa)/(动态规划+结论)

    题面 Bzoj 洛谷 题解(0/1分数规划+spfa) 考虑\(0/1\)分数规划,设当前枚举到的答案为\(ans\) 则我们要使(其中\(\forall b_i=1\)) \[ \frac{\sum ...

  5. poj2728 Desert King【最优比率生成树】【Prim】【0/1分数规划】

    含[最小生成树Prim]模板. Prim复杂度为$O(n^2),适用于稠密图,特别是完全图的最小生成树的求解.   Desert King Time Limit: 3000MS   Memory Li ...

  6. bzoj 3232 圈地游戏——0/1分数规划(或网络流)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3232 当然是0/1分数规划.但加的东西和减的东西不在一起,怎么办? 考虑把它们合在一起.因为 ...

  7. poj 2976 Dropping tests 0/1分数规划

    0/1分数规划问题,用二分解决!! 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> # ...

  8. bzoj 3597: [Scoi2014]方伯伯运椰子 0/1分数规划

    3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 144  Solved: 78[Submit][Status ...

  9. LOJ 3089 「BJOI2019」奥术神杖——AC自动机DP+0/1分数规划

    题目:https://loj.ac/problem/3089 没想到把根号之类的求对数变成算数平均值.写了个只能得15分的暴力. #include<cstdio> #include< ...

随机推荐

  1. Android内嵌网页webview点击其中的链接跳转到我们应用内的Activity

    在一个大的Android项目中,由于客户端来不及更新和实现,经常会内嵌一些网页(在一些大型的互联网公司,PC的产品总是跑在客户端的前面),比如活动页面,通常可以内嵌用html5实现的页面,可以适配手机 ...

  2. CF889E Mod Mod Mod

    http://codeforces.com/problemset/problem/889/E 题解 首先我们观察到在每次取模的过程中一定会有一次的结果是\(a_i-1\),因为如果不是,我们可以调整, ...

  3. [CSP-S模拟测试]:毛二琛(DP)

    题目描述 $MYC$在$NOI2018$中,遇到了$day1T2$这样一个题,题目是让你求有多少“好”的排列.$MYC$此题没有获得高分,感到非常惭愧,于是回去专心研究排列了.如今数排列的题对$MYC ...

  4. 在 iTerm2 终端使用 command + ;会弹出最近使用的命令列表

  5. 9 关联管理器(RelatedManager)

    知识预览: class RelatedManager class RelatedManager "关联管理器"是在一对多或者多对多的关联上下文中使用的管理器.它存在于下面两种情况: ...

  6. Day2 01 引用类型和值类型

    值类型:值类型变量,存储的是对象的值.给其赋值,会创建值的副本,修改任何一个副本,不会影响其他副本. int x = 5; int y = x;  //创建一个x的副本y  x把其自身的值传送给了y ...

  7. Booting the Linux/ppc kernel without Open Firmware

    The DT block format 这一章定义了传递给内核的FDT(flattened device tree)的格式.关于它包含的内容以及内核需要的属性将在后续章节描述. 注:DT block应 ...

  8. leetcode 374猜数字大小

    // Forward declaration of guess API. // @param num, your guess // @return -1 if my number is lower, ...

  9. jenkins执行 pod install 报错 CocoaPods requires your terminal to be using UTF-8 encoding. Consider adding the following to ~/.profile:

    错误提示是: CocoaPods 需要终端使用utf-8编码 解决办法

  10. thinkphp5.0学习笔记(二)API后台处理与命名空间

    命名空间 先来看命名空间吧: 命名空间是学习TP的基础, <?php namespace app\lian\c1; class yi{ public $obj = "这是第一个空间里面 ...