题意:给定三个序列abc,问最少操作几次使得满足a<b<c

题解:将三个序列合并起来,设cnt[i][1/2/3]表示前i个数有几个是来自序列1/2/3的。

枚举第一个序列要到i,此时对于第一个序列的操作次数就是cnt[i][2]+cnt[i][3]+cnt[n][1]-cnt[i][1]

对于第二个序列,暴力枚举要到j,此时的操作次数就是cnt[j][3]-cnt[i][3]+cnt[n][2]-cnt[j][2]

将两个加起来就是答案,求出最小的那个

显然这样做是O(n^2)的,考虑优化

可以观察到,对于一个确定的i,cnt[i][3]是定值,将式子改写为cnt[j][3]+cnt[n][2]-cnt[j][2]-cnt[i][3],设f[i]=cnt[i][3]+cnt[n][2]-cnt[i][2],那么f[i]是一个确定的函数,式子进一步改写为f[j]-cnt[i][3]

相当于对于每个i,求一个最小的f[j]-cnt[i][3],用一个线段树即可

代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<algorithm>
#include<cmath>
#define ll long long
using namespace std;
int k1,k2,k3,a,n,ans=1e9;
int cnt[][];
struct node
{
int v,bh;
}q[];
bool cmp(const node &T1,const node &T2){return T1.v<T2.v;}
class Segtree
{
public:
int v[*],fl[*]; void pushup(int fxy)
{
v[fxy]=min(v[fxy<<],v[fxy<<|]);
}
void pushdown(int fxy)
{
if(fl[fxy])
{
v[fxy<<]+=fl[fxy];
v[fxy<<|]+=fl[fxy];
fl[fxy<<]+=fl[fxy];
fl[fxy<<|]+=fl[fxy];
fl[fxy]=;
}
}
void build(int l,int r,int fxy)
{
if(l==r)
{
v[fxy]=cnt[l][]+cnt[n][]-cnt[r][];
return;
}
int mid=l+r>>;
build(l,mid,fxy<<);
build(mid+,r,fxy<<|);
pushup(fxy);
}
void change(int l,int r,int al,int ar,int tv,int fxy)
{
if(l==al && r==ar)
{
v[fxy]+=tv;
fl[fxy]+=tv;
return;
}
pushdown(fxy);
int mid=l+r>>;
if(ar<=mid)change(l,mid,al,ar,tv,fxy<<);
if(al>mid)change(mid+,r,al,ar,tv,fxy<<|);
if(al<=mid && ar>mid)
{
change(l,mid,al,mid,tv,fxy<<);
change(mid+,r,mid+,ar,tv,fxy<<|);
}
pushup(fxy);
}
int ask(int l,int r,int al,int ar,int fxy)
{
if(l==al && r==ar)return v[fxy];
pushdown(fxy);
int mid=l+r>>;
if(ar<=mid)return ask(l,mid,al,ar,fxy<<);
if(al>mid)return ask(mid+,r,al,ar,fxy<<|);
return min(ask(l,mid,al,mid,fxy<<),ask(mid+,r,mid+,ar,fxy<<|));
}
}segtree;
int main()
{
scanf("%d%d%d",&k1,&k2,&k3);
for(int i=;i<=k1;i++){scanf("%d",&a);q[i]=(node){a,};}
for(int i=;i<=k2;i++){scanf("%d",&a);q[i+k1]=(node){a,};}
for(int i=;i<=k3;i++){scanf("%d",&a);q[i+k1+k2]=(node){a,};}
n=k1+k2+k3;
sort(q+,q++n,cmp);
for(int i=;i<=n;i++)
{
cnt[i][]=cnt[i-][]+(q[i].bh==);
cnt[i][]=cnt[i-][]+(q[i].bh==);
cnt[i][]=cnt[i-][]+(q[i].bh==);
}
int t;
segtree.build(,n,);
for(int i=;i<n;i++)
{
t=segtree.ask(,n,i+,n,);
t=min(t,cnt[n][]-cnt[i][]);
ans=min(ans,t+cnt[i][]+cnt[i][]+cnt[n][]-cnt[i][]);
if(q[i+].bh==)segtree.change(,n,i+,n,-,);
}
ans=min(ans,cnt[n][]+cnt[n][]);
printf("%d\n",ans);
return ;
}

【CF1257E】The Contest【线段树】的更多相关文章

  1. hdu 1698 线段树 区间更新 区间求和

    Just a Hook Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  2. 2017 Multi-University Training Contest - Team 9 1002&&HDU 6162 Ch’s gift【树链部分+线段树】

    Ch’s gift Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S ...

  3. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  4. Codeforces Round #222 (Div. 1) B. Preparing for the Contest 二分+线段树

    B. Preparing for the Contest 题目连接: http://codeforces.com/contest/377/problem/B Description Soon ther ...

  5. AtCoder Regular Contest 069 F Flags 二分,2-sat,线段树优化建图

    AtCoder Regular Contest 069 F Flags 二分,2-sat,线段树优化建图 链接 AtCoder 大意 在数轴上放上n个点,点i可能的位置有\(x_i\)或者\(y_i\ ...

  6. UVALive 7141 BombX(离散化+线段树)(2014 Asia Shanghai Regional Contest)

    题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=6 ...

  7. HDU 4031 Attack(离线+线段树)(The 36th ACM/ICPC Asia Regional Chengdu Site —— Online Contest)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4031 Problem Description Today is the 10th Annual of ...

  8. HDU 5775 Bubble Sort(线段树)(2016 Multi-University Training Contest 4 1012)

    原址地址:http://ibupu.link/?id=31 Problem Description P is a permutation of the integers from 1 to N(ind ...

  9. The Preliminary Contest for ICPC China Nanchang National Invitational I. Max answer (单调栈+线段树)

    题目链接:https://nanti.jisuanke.com/t/38228 题目大意:一个区间的值等于该区间的和乘以区间的最小值.给出一个含有n个数的序列(序列的值有正有负),找到该序列的区间最大 ...

随机推荐

  1. KETTLE——(例)简单的字段转换

    一个简单的小例子:结合数据抽取.简单的字段转换.数据输出. 资源库连接.数据输入.数据输出.参见之前的文章. ​ 基本的转换结构是这样的,我们从表中输入,选择我们需要的字段,已经对应的名称,然后将数据 ...

  2. 06 使用bbed提交delete的数据--01

    使用bbed模拟delete提交操作 --session 1 TEST@ orcl )); Table created. TEST@ orcl ,'AAAAA'); row created. TEST ...

  3. Java ——Character 类

    本节重点思维导图 Character 类用于对单个字符进行操作. Character 类在对象中包装一个基本类型 char 的值 char ch = 'a'; // Unicode 字符表示形式 ch ...

  4. Spring Boot系列(三) Spring Boot 之 JDBC

    数据源 类型 javax.sql.DataSource javax.sql.XADataSource org.springframework.jdbc.datasource.embedded,Enbe ...

  5. Python3的基本数据类型

    2.1. Python3中六个标准的基本数据类型: Number(数字) String(字符串) Sets(集合) Tuple(元组) List(列表) Dictionary(字典) 2.2. Pyt ...

  6. 前端 CSS的选择器 伪类选择器 CSS3 nth-child()

    first-child 选中第一个标签 应用CSS样式 <!DOCTYPE html> <html lang="en"> <head> < ...

  7. Maven依赖项Scope属性设置含义

    Idea的File->Project Structure->左侧Modules: 选择自己的项目如图: 每个依赖项的Scope选项进行该jar包的相关操作设置,默认为compile,根据需 ...

  8. Gorgeous Sequence(线段树)

    Gorgeous Sequence Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Othe ...

  9. Java反射学习-3 - 反射获取属性,方法,构造器

    package cn.tx.reflect; import java.lang.reflect.Constructor; import java.lang.reflect.Field; import ...

  10. css炫酷动画收藏

    1.按钮.hover.input动画(cssfx) https://cssfx.dev/ 2.svg 矢量定制icon(ikonate) https://www.ikonate.com/#conten ...