题目大意:给你$k(2\leqslant k\leqslant5)$个$1\sim n(n\leqslant10^3)$的排列,求它们的最长子序列

题解:将$k$个排列中每个元素的位置记录下来。如果是公共子序列,那么这些数的位置在$k$个排列中都是递增的,然后就变成了一个$k$维偏序问题。

因为$n\leqslant10^3$,所以可以用$O(n^2k)$的$DP$来做

卡点:看成了最长公共上升子序列,然后一直挂

C++ Code:

#include <cstdio>
#define maxn 1010
int n, k, ans;
int s[5][maxn], pos[5][maxn];
int f[maxn];
inline int max(int a, int b) {return a > b ? a : b;}
int main() {
scanf("%d%d", &n, &k);
for (int i = 0; i < k; i++) {
for (int j = 1; j <= n; j++) {
scanf("%d", s[i] + j);
pos[i][s[i][j]] = j;
}
}
for (int i = 1, v; v = s[0][i], i <= n; i++) {
f[v] = 1;
for (int j = 1, u; u = s[0][j], j < i; j++) {
int found = 20040826;
for (int l = 1; l < k && found; l++) if (pos[l][v] < pos[l][u]) found = 0;
if (found) f[v] = max(f[v], f[u] + 1);
}
ans = max(ans, f[v]);
}
printf("%d\n", ans);
return 0;
}

  

[CF463D]Gargari and Permutations的更多相关文章

  1. CF463D Gargari and Permutations dp

    给定 $n<=10$ 个 $1$~$n$ 的排列,求这些排列的 $LCS$. 考虑两个排列怎么做:以第一个序列为基准,将第二个序列的元素按照该元素在第一个序列中出现位置重新编号. 然后,求一个 ...

  2. Codeforces #264 (Div. 2) D. Gargari and Permutations

    Gargari got bored to play with the bishops and now, after solving the problem about them, he is tryi ...

  3. codeforces Gargari and Permutations(DAG+BFS)

    /* 题意:求出多个全排列的lcs! 思路:因为是全排列,所以每一行的每一个数字都不会重复,所以如果有每一个全排列的数字 i 都在数字 j的前面,那么i, j建立一条有向边! 最后用bfs遍历整个图, ...

  4. codeforces 463D Gargari and Permutations(dp)

    题目 参考网上的代码的... //要找到所有序列中的最长的公共子序列, //定义状态dp[i]为在第一个序列中前i个数字中的最长公共子序列的长度, //状态转移方程为dp[i]=max(dp[i],d ...

  5. Codeforces 463D Gargari and Permutations

    http://codeforces.com/problemset/problem/463/D 题意:给出k个排列,问这k个排列的最长公共子序列的长度. 思路:只考虑其中一个的dp:f[i]=max(f ...

  6. Codeforces Round #264 (Div. 2) D. Gargari and Permutations 多序列LIS+dp好题

    http://codeforces.com/contest/463/problem/D 求k个序列的最长公共子序列. k<=5 肯定 不能直接LCS 网上题解全是图论解法...我就来个dp的解法 ...

  7. Codeforces 463D Gargari and Permutations(求k个序列的LCS)

    题目链接:http://codeforces.com/problemset/problem/463/D 题目大意:给你k个序列(2=<k<=5),每个序列的长度为n(1<=n< ...

  8. CF 463D Gargari and Permutations [dp]

    给出一个长为n的数列的k个排列(1 ≤ n ≤ 1000; 2 ≤ k ≤ 5).求这个k个数列的最长公共子序列的长度 dp[i]=max{dp[j]+1,where j<i 且j,i相应的字符 ...

  9. Codeforces 463D Gargari and Permutations:隐式图dp【多串LCS】

    题目链接:http://codeforces.com/problemset/problem/463/D 题意: 给你k个1到n的排列,问你它们的LCS(最长公共子序列)是多长. 题解: 因为都是1到n ...

随机推荐

  1. java基础 final 修饰成员变量 只能赋值一次问题

    final int a; public Fu(){ a=1; }

  2. mariadb多实例实现

    环境:centos7,yum 安装mariadb5.5 mkdir /mysqldb/{3306,3307.3308}/{etc,socket,pid,log,data} -pv chown -R m ...

  3. js jquery 权限单选 bug修改以及正确代码 购物车数量加减

    效果图废话不多直接上代码 用的avalon渲染,其实都是一样的 <div class="shop-arithmetic"> <a href="javas ...

  4. Mac中Mysql开启远程访问(不同于linux直接改配置文件)

    在mac中安装Mysql Workbench 用root用户连上安装的Mysql.  开启远程访问的服务 如下图可以看到是root用户绑定的是localhost  如果不做修改的话,直接访问是访问不了 ...

  5. 前端vue项目部署到tomcat,一刷新报错404解决方法

    公司前端写的后台部署到tomcat webapps目录下后,无法进行刷新,一刷新就会报错404,自动跳的404页面.在网上查了下,官方说是HTML5 History 模式引发的问题,但是解决方案中,并 ...

  6. Navicat-12.0.26的激活

    1.卸载掉早期版本,卸载干净,然后安装最新版Navicat(使用群文件中Iobit uninstaller8卸载) 2.安装完成后将破解补丁复制到安装目录下,运行破解补丁. 4.先patch,然后选择 ...

  7. 多进程(multiprocessing module)

    一.多进程 1.1 多进程的概念 由于GIL的存在,python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程.Python提供了非常好 ...

  8. js获取url参数方法

    function GetQueryString(name) { var reg = new RegExp("(^|&)" + name + "=([^&] ...

  9. python__高级 : @修饰器(装饰器)的理解

    以下是第一次了解的时候写的东西,有的地方理解不正确,虽已改正但是太片面,请直接看下面第二次修改加上的内容. ---------------------------------------------- ...

  10. VIM配置IDE

    转载于:https://blog.csdn.net/andre617/article/details/53496490#%E8%84%9A%E6%B3%A8 由于YCM需要vim支持python,需要 ...