[CF463D]Gargari and Permutations
题目大意:给你$k(2\leqslant k\leqslant5)$个$1\sim n(n\leqslant10^3)$的排列,求它们的最长子序列
题解:将$k$个排列中每个元素的位置记录下来。如果是公共子序列,那么这些数的位置在$k$个排列中都是递增的,然后就变成了一个$k$维偏序问题。
因为$n\leqslant10^3$,所以可以用$O(n^2k)$的$DP$来做
卡点:看成了最长公共上升子序列,然后一直挂
C++ Code:
#include <cstdio>
#define maxn 1010
int n, k, ans;
int s[5][maxn], pos[5][maxn];
int f[maxn];
inline int max(int a, int b) {return a > b ? a : b;}
int main() {
scanf("%d%d", &n, &k);
for (int i = 0; i < k; i++) {
for (int j = 1; j <= n; j++) {
scanf("%d", s[i] + j);
pos[i][s[i][j]] = j;
}
}
for (int i = 1, v; v = s[0][i], i <= n; i++) {
f[v] = 1;
for (int j = 1, u; u = s[0][j], j < i; j++) {
int found = 20040826;
for (int l = 1; l < k && found; l++) if (pos[l][v] < pos[l][u]) found = 0;
if (found) f[v] = max(f[v], f[u] + 1);
}
ans = max(ans, f[v]);
}
printf("%d\n", ans);
return 0;
}
[CF463D]Gargari and Permutations的更多相关文章
- CF463D Gargari and Permutations dp
给定 $n<=10$ 个 $1$~$n$ 的排列,求这些排列的 $LCS$. 考虑两个排列怎么做:以第一个序列为基准,将第二个序列的元素按照该元素在第一个序列中出现位置重新编号. 然后,求一个 ...
- Codeforces #264 (Div. 2) D. Gargari and Permutations
Gargari got bored to play with the bishops and now, after solving the problem about them, he is tryi ...
- codeforces Gargari and Permutations(DAG+BFS)
/* 题意:求出多个全排列的lcs! 思路:因为是全排列,所以每一行的每一个数字都不会重复,所以如果有每一个全排列的数字 i 都在数字 j的前面,那么i, j建立一条有向边! 最后用bfs遍历整个图, ...
- codeforces 463D Gargari and Permutations(dp)
题目 参考网上的代码的... //要找到所有序列中的最长的公共子序列, //定义状态dp[i]为在第一个序列中前i个数字中的最长公共子序列的长度, //状态转移方程为dp[i]=max(dp[i],d ...
- Codeforces 463D Gargari and Permutations
http://codeforces.com/problemset/problem/463/D 题意:给出k个排列,问这k个排列的最长公共子序列的长度. 思路:只考虑其中一个的dp:f[i]=max(f ...
- Codeforces Round #264 (Div. 2) D. Gargari and Permutations 多序列LIS+dp好题
http://codeforces.com/contest/463/problem/D 求k个序列的最长公共子序列. k<=5 肯定 不能直接LCS 网上题解全是图论解法...我就来个dp的解法 ...
- Codeforces 463D Gargari and Permutations(求k个序列的LCS)
题目链接:http://codeforces.com/problemset/problem/463/D 题目大意:给你k个序列(2=<k<=5),每个序列的长度为n(1<=n< ...
- CF 463D Gargari and Permutations [dp]
给出一个长为n的数列的k个排列(1 ≤ n ≤ 1000; 2 ≤ k ≤ 5).求这个k个数列的最长公共子序列的长度 dp[i]=max{dp[j]+1,where j<i 且j,i相应的字符 ...
- Codeforces 463D Gargari and Permutations:隐式图dp【多串LCS】
题目链接:http://codeforces.com/problemset/problem/463/D 题意: 给你k个1到n的排列,问你它们的LCS(最长公共子序列)是多长. 题解: 因为都是1到n ...
随机推荐
- java基础 final 修饰成员变量 只能赋值一次问题
final int a; public Fu(){ a=1; }
- mariadb多实例实现
环境:centos7,yum 安装mariadb5.5 mkdir /mysqldb/{3306,3307.3308}/{etc,socket,pid,log,data} -pv chown -R m ...
- js jquery 权限单选 bug修改以及正确代码 购物车数量加减
效果图废话不多直接上代码 用的avalon渲染,其实都是一样的 <div class="shop-arithmetic"> <a href="javas ...
- Mac中Mysql开启远程访问(不同于linux直接改配置文件)
在mac中安装Mysql Workbench 用root用户连上安装的Mysql. 开启远程访问的服务 如下图可以看到是root用户绑定的是localhost 如果不做修改的话,直接访问是访问不了 ...
- 前端vue项目部署到tomcat,一刷新报错404解决方法
公司前端写的后台部署到tomcat webapps目录下后,无法进行刷新,一刷新就会报错404,自动跳的404页面.在网上查了下,官方说是HTML5 History 模式引发的问题,但是解决方案中,并 ...
- Navicat-12.0.26的激活
1.卸载掉早期版本,卸载干净,然后安装最新版Navicat(使用群文件中Iobit uninstaller8卸载) 2.安装完成后将破解补丁复制到安装目录下,运行破解补丁. 4.先patch,然后选择 ...
- 多进程(multiprocessing module)
一.多进程 1.1 多进程的概念 由于GIL的存在,python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程.Python提供了非常好 ...
- js获取url参数方法
function GetQueryString(name) { var reg = new RegExp("(^|&)" + name + "=([^&] ...
- python__高级 : @修饰器(装饰器)的理解
以下是第一次了解的时候写的东西,有的地方理解不正确,虽已改正但是太片面,请直接看下面第二次修改加上的内容. ---------------------------------------------- ...
- VIM配置IDE
转载于:https://blog.csdn.net/andre617/article/details/53496490#%E8%84%9A%E6%B3%A8 由于YCM需要vim支持python,需要 ...