单源次短路径:poj:3255-Roadblocks
Roadblocks
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 17521 Accepted: 6167
Description
Bessie has moved to a small farm and sometimes enjoys returning to visit one of her best friends. She does not want to get to her old home too quickly, because she likes the scenery along the way. She has decided to take the second-shortest rather than the shortest path. She knows there must be some second-shortest path.
The countryside consists of R (1 ≤ R ≤ 100,000) bidirectional roads, each linking two of the N (1 ≤ N ≤ 5000) intersections, conveniently numbered 1..N. Bessie starts at intersection 1, and her friend (the destination) is at intersection N.
The second-shortest path may share roads with any of the shortest paths, and it may backtrack i.e., use the same road or intersection more than once. The second-shortest path is the shortest path whose length is longer than the shortest path(s) (i.e., if two or more shortest paths exist, the second-shortest path is the one whose length is longer than those but no longer than any other path).
Input
Line 1: Two space-separated integers: N and R
Lines 2..R+1: Each line contains three space-separated integers: A, B, and D that describe a road that connects intersections A and B and has length D (1 ≤ D ≤ 5000)
Output
Line 1: The length of the second shortest path between node 1 and node N
Sample Input
4 4
1 2 100
2 4 200
2 3 250
3 4 100
Sample Output
450
Hint
Two routes: 1 -> 2 -> 4 (length 100+200=300) and 1 -> 2 -> 3 -> 4 (length 100+250+100=450)
解题心得:
- 提议就是给你一个无向图,叫你求出第1点到第n点的次短路径。
- 最短路径很好求,方法也很多,其实次短路径也很好求,就拿dij来说,每次维护的都是一个最小值,那么次短路径就可以在最小值之上维护一个和最小值差值最小的值。
- 到某个顶点v的次短路要么是到其他某个顶点u的最短路加上u到v的边,要么是到u的次短路加上u到v的边。因此所需要求的就是到所有顶点的最短路和次短路。
#include <stdio.h>
#include <vector>
#include <algorithm>
#include <queue>
#include <cstring>
using namespace std;
typedef pair<int,int> P;
const int maxn = 5010;
vector <P> ve[maxn];
int n,m,dis[maxn],dis2[maxn];
priority_queue <P ,vector<P>,greater<P> > qu;
void init() {
memset(dis,0x3f,sizeof(dis));
memset(dis2,0x3f,sizeof(dis2));
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
int u,v,va;
scanf("%d%d%d",&u,&v,&va);
ve[u].push_back(make_pair(va,v));
ve[v].push_back(make_pair(va,u));
}
dis[1] = 0;
qu.push(make_pair(0,1));
}
void dij() {
while(!qu.empty()) {
P now = qu.top();
qu.pop();
int u = now.second;
int d = now.first;
if(dis2[u] < d)
continue;
for(int i=0;i<ve[u].size();i++){
int v = ve[u][i].second;
int d2 = d + ve[u][i].first;
if(d2 < dis[v]) {
swap(dis[v],d2);
qu.push(make_pair(dis[v],v));
}
if(d2 > dis[v] && d2 < dis2[v]) {
dis2[v] = d2;
qu.push(make_pair(d2,v));
}
}
}
return ;
}
int main() {
init();
dij();
printf("%d\n",dis2[n]);
return 0;
}
单源次短路径:poj:3255-Roadblocks的更多相关文章
- POJ 3255 Roadblocks (Dijkstra求最短路径的变形)(Dijkstra求次短路径)
Roadblocks Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 16425 Accepted: 5797 Descr ...
- POJ 3255 Roadblocks(A*求次短路)
Roadblocks Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 12167 Accepted: 4300 Descr ...
- 次最短路径 POJ 3255 Roadblocks
http://poj.org/problem?id=3255 这道题还是有点难度 要对最短路径的算法非常的了解 明晰 那么做适当的修改 就可以 关键之处 次短的路径: 设u 到 v的边权重为cost ...
- POJ 3255 Roadblocks (次短路 SPFA )
题目链接 Description Bessie has moved to a small farm and sometimes enjoys returning to visit one of her ...
- POJ 3255 Roadblocks (次级短路问题)
解决方案有许多美丽的地方.让我们跳回到到达终点跳回(例如有两点)....无论如何,这不是最短路,但它并不重要.算法能给出正确的结果 思考:而最短的路到同一点例程.spfa先正达恳求一次,求的最短路径的 ...
- POJ 3255 Roadblocks --次短路径
由于次短路一定存在,则可知次短路一定是最短路中某一条边不走,然后回到最短路,而且只是一条边,两条边以上不走的话,就一定不会是次短路了(即以边换边才能使最小).所以可以枚举每一条边,算出从起点到这条边起 ...
- poj 3255 Roadblocks 次短路(两次dijksta)
Roadblocks Time Limit : 4000/2000ms (Java/Other) Memory Limit : 131072/65536K (Java/Other) Total S ...
- POJ 3255 Roadblocks (次短路模板)
Roadblocks http://poj.org/problem?id=3255 Time Limit: 2000MS Memory Limit: 65536K Descriptio ...
- poj 3255 Roadblocks
Roadblocks Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13216 Accepted: 4660 Descripti ...
随机推荐
- Java方法命名之“由简入繁”原则
1.访问控制层(Controller 层)中的方法命名方向是简洁明了,向着自然化语言方向靠拢,比如“更新用户”,建议命名为“updateUser”,而非“updateUserById”,实际上我们更新 ...
- Angular搭建脚手架
1.安装CLI: cnpm install -g @angular/cli //卸载: npm uninstall -g @angular/cli npm cache clean 2.检测是否成功 ...
- Native Method
While a 100% pure Java solution is nice in principle, realistically, for an application, there are s ...
- django rest framework 详解
Django REST framework 是用于构建Web API 的强大而灵活的工具包. 我们可能想使用REST框架的一些原因: Web浏览API对于开发人员来说是一个巨大的可用性. 认证策略包括 ...
- Python基础学习-列表的常用方法
列表方法 = Python 3.5.2 (default, Sep 14 2016, 11:27:58) [GCC 6.2.1 20160901 (Red Hat 6.2.1-1)] on linux ...
- 检测浏览器中是否有Flash插件
由于IE和非IE浏览器检测方式不同,所以代码如下 function hasPlugin(name){ debugger; name = name.toLowerCase(); for(var i=0; ...
- C#自定义规则对比两个集合的对象是否相等
IList<获取的类> ret = 类的结果集; return ret.Except(另一个相同类型的对象列表集, new AClassComPare()): public class A ...
- BestCoder Round #89 1001 Fxx and string
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5944 分析: 竟然 i,j,k成等比数列,即i*k = j*j,还要满足 j|i or j|k. 不防 ...
- python 面向对象(二)--访问限制
在Class内部,可以有属性和方法,而外部代码可以通过直接调用实例变量的方法来操作数据,这样,就隐藏了内部的复杂逻辑. 但是,从前面Student类的定义来看,外部代码还是可以自由地修改一个实例的na ...
- 2018.9.3 CEP课程总结
什么是CEP课程? 职业生涯规划课程 蓝桥介绍 立人达人 全人教育 人文 重视人 尊重人 关心人 爱护人 人才 人格 简历的制作 找工作的流程? 1.简历的准备------>投发简历(自己投.老 ...