ES doc_values介绍——本质是field value的列存储,做聚合分析用,ES默认开启,会占用存储空间(列存储压缩技巧,除公共除数或者同时减去最小数,字符串压缩的话,直接去重后用数字ID压缩)
doc_values
Doc values are the on-disk data structure, built at document index time, which makes this data access pattern possible. They store the same values as the _source but in a column-oriented fashion that is way more efficient for sorting and aggregations.(本质!!!) Doc values are supported on almost all field types, with the notable exception of analyzed string fields.
All fields which support doc values have them enabled by default. If you are sure that you don’t need to sort or aggregate on a field, or access the field value from a script, you can disable doc values in order to save disk space:
PUT my_index
{
"mappings": {
"my_type": {
"properties": {
"status_code": {
"type": "keyword"
},
"session_id": {
"type": "keyword",
"doc_values": false
}
}
}
}
}
|
|
The |
|
|
The |
摘自:https://www.elastic.co/guide/en/elasticsearch/reference/current/doc-values.html
Column-store compression
At a high level, doc values are essentially a serialized column-store. As we discussed in the last section, column-stores excel at certain operations because the data is naturally laid out in a fashion that is amenable to those queries.
But they also excel at compressing data, particularly numbers. This is important for both saving space on disk and for faster access. Modern CPU’s are many orders of magnitude faster than disk drives (although the gap is narrowing quickly with upcoming NVMe drives). That means it is often advantageous to minimize the amount of data that must be read from disk, even if it requires extra CPU cycles to decompress.
To see how it can help compression, take this set of doc values for a numeric field:
Doc Terms
-----------------------------------------------------------------
Doc_1 | 100
Doc_2 | 1000
Doc_3 | 1500
Doc_4 | 1200
Doc_5 | 300
Doc_6 | 1900
Doc_7 | 4200
-----------------------------------------------------------------
The column-stride layout means we have a contiguous block of numbers:[100,1000,1500,1200,300,1900,4200].
xxx
Doc values use several tricks like this. In order, the following compression schemes are checked:
- If all values are identical (or missing), set a flag and record the value
- If there are fewer than 256 values, a simple table encoding is used
- If there are > 256 values, check to see if there is a common divisor
- If there is no common divisor, encode everything as an offset from the smallest value
You’ll note that these compression schemes are not "traditional" general purpose compression like DEFLATE or LZ4. Because the structure of column-stores are rigid and well-defined, we can achieve higher compression by using specialized schemes rather than the more general compression algorithms like LZ4.
You may be thinking "Well that’s great for numbers, but what about strings?" Strings are encoded similarly, with the help of an ordinal table. The strings are de-duplicated and sorted into a table, assigned an ID, and then those ID’s are used as numeric doc values. Which means strings enjoy many of the same compression benefits that numerics do.
The ordinal table itself has some compression tricks, such as using fixed, variable or prefix-encoded strings.
摘自:https://www.elastic.co/guide/en/elasticsearch/guide/current/_deep_dive_on_doc_values.html
ES doc_values介绍——本质是field value的列存储,做聚合分析用,ES默认开启,会占用存储空间(列存储压缩技巧,除公共除数或者同时减去最小数,字符串压缩的话,直接去重后用数字ID压缩)的更多相关文章
- 列存储压缩技巧,除公共除数或者同时减去最小数,字符串压缩的话,直接去重后用数字ID压缩
Column-store compression At a high level, doc values are essentially a serialized column-store. As w ...
- ES doc_values介绍2——本质是field value的列存储,做聚合分析用,ES默认开启,会占用存储空间
一.doc_values介绍 doc values是一个我们再三重复的重要话题了,你是否意识到一些东西呢? 搜索时,我们需要一个“词”到“文档”列表的映射 排序时,我们需要一个“文档”到“词“列表的映 ...
- ES doc_values的来源,field data——就是doc->terms的正向索引啊,不过它是在查询阶段通过读取倒排索引loading segments放在内存而得到的?
Support in the Wild: My Biggest Elasticsearch Problem at Scale Java Heap Pressure Elasticsearch has ...
- ES系列十四、ES聚合分析(聚合分析简介、指标聚合、桶聚合)
一.聚合分析简介 1. ES聚合分析是什么? 聚合分析是数据库中重要的功能特性,完成对一个查询的数据集中数据的聚合计算,如:找出某字段(或计算表达式的结果)的最大值.最小值,计算和.平均值等.ES作为 ...
- CQRS\ES架构介绍
大家好,我叫汤雪华.我平时工作使用Java,业余时间喜欢用C#做点开源项目,如ENode, EQueue.我个人对DDD领域驱动设计.CQRS架构.事件溯源(Event Sourcing,简称ES). ...
- MYSQL删除表的记录后如何使ID从1开始
MYSQL删除表的记录后如何使ID从1开始 MYSQL删除表的记录后如何使ID从1开始 http://hi.baidu.com/289766516/blog/item/a3f85500556e2c09 ...
- es简单介绍及使用注意事项
是什么? Elasticsearch是一个基于Apache Lucene(TM)的开源搜索引擎.无论在开源还是专有领域,Lucene可以被认为是迄今为止最先进.性能最好的.功能最全的搜索引擎库. El ...
- 在数据库中使用数字ID作为主键的表生成主键方法
在数据库开发中,很多时候建一个表的时候会使用一个数字类型来作为主键,使用自增长类型自然会更方便,只是本人从来不喜欢有内容不在自己掌控之中,况且自增长类型在进行数据库复制时会比较麻烦.所以本人一直使用自 ...
- Oracle 去重后排序
因项目需求,需要将查询结果,去重后,在按照主键(自增列)排序,百度一番,记录下来 DEMO SELECT * FROM (SELECT ROW_NUMBER() OVER(PARTITION BY S ...
随机推荐
- 【Python + Mysql】之用pymysql库连接Mysql数据库并进行增删改查操作
用pip下载pymysql并引用 具体请参考文章: <Python之MySQL数据库增删改查操作> <python3.6 使用 pymysql 连接 Mysql 数据库及 简单的增删 ...
- 嵌入式开发之工具---比开发手册更重要的一个命令 man page
man http://bbs.chinaunix.net/thread-826490-1-1.html http://read.pudn.com/downloads70/ebook/254107/ch ...
- js浅度克隆/深度克隆
首先弄明白几个概念: 一. 具体数据类型分为两种: 1.原始数据类型 2.引用数据类型 原始数据类型存储的是对象的实际地址,包括: number.string.boolean.还有两个特殊的nul ...
- Spring Ioc (this is my first example)
一.首先看下源码结构 二.HelloWord 类 package com.northeasttycoon.bean; /** * 打印出 helloword 参数值 * * @author tycoo ...
- Linux 服务器上建立用户并分配权限
查看用户 whoami #要查看当前登录用户的用户名 who am i #表示打开当前伪终端的用户的用户名 who mom likes who 命令其它常用参数 参数 说明 -a 打印能打印的全部 - ...
- 【BZOJ4070】[Apio2015]雅加达的摩天楼 set+最短路
[BZOJ4070][Apio2015]雅加达的摩天楼 Description 印尼首都雅加达市有 N 座摩天楼,它们排列成一条直线,我们从左到右依次将它们编号为 0 到 N−1.除了这 N 座摩天楼 ...
- 【BZOJ4184】shallot 线段树+vector+线性基
[BZOJ4184]shallot Description 小苗去市场上买了一捆小葱苗,她突然一时兴起,于是她在每颗小葱苗上写上一个数字,然后把小葱叫过来玩游戏. 每个时刻她会给小葱一颗小葱苗或者是从 ...
- iOS 符号化崩溃日志
1.获取一下三个文件 1. crash报告(.crash文件) 2. 符号文件 (.dsymb文件) 3. 应用程序文件 (appName.app文件,把IPA文件后缀改为zip,然后解压,Pay ...
- Feign-独立使用-实战
目录 写在前面 1.1.1. 短连接API的接口准备 1.1.2. 申明远程接口的本地代理 1.1.3. 远程API的本地调用 写在最后 疯狂创客圈 亿级流量 高并发IM 学习实战 疯狂创客圈 Jav ...
- php header, 允许ajax跨域访问
<?php header('content-type:application:json;charset=utf8'); header('Access-Control-Allow-Origin:* ...