---恢复内容开始---

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2962

Trucking

Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 11428    Accepted Submission(s): 1104

Problem Description
A certain local trucking company would like to transport some goods on a cargo truck from one place to another. It is desirable to transport as much goods as possible each trip. Unfortunately, one cannot always use the roads in the shortest route: some roads may have obstacles (e.g. bridge overpass, tunnels) which limit heights of the goods transported. Therefore, the company would like to transport as much as possible each trip, and then choose the shortest route that can be used to transport that amount.

For the given cargo truck, maximizing the height of the goods transported is equivalent to maximizing the amount of goods transported. For safety reasons, there is a certain height limit for the cargo truck which cannot be exceeded.

 
Input
The input consists of a number of cases. Each case starts with two integers, separated by a space, on a line. These two integers are the number of cities (C) and the number of roads (R). There are at most 1000 cities, numbered from 1. This is followed by R lines each containing the city numbers of the cities connected by that road, the maximum height allowed on that road, and the length of that road. The maximum height for each road is a positive integer, except that a height of -1 indicates that there is no height limit on that road. The length of each road is a positive integer at most 1000. Every road can be travelled in both directions, and there is at most one road connecting each distinct pair of cities. Finally, the last line of each case consists of the start and end city numbers, as well as the height limit (a positive integer) of the cargo truck. The input terminates when C = R = 0.
 
Output
For each case, print the case number followed by the maximum height of the cargo truck allowed and the length of the shortest route. Use the format as shown in the sample output. If it is not possible to reach the end city from the start city, print "cannot reach destination" after the case number. Print a blank line between the output of the cases.
 
Sample Input
5 6
1 2 7 5
1 3 4 2
2 4 -1 10
2 5 2 4
3 4 10 1
4 5 8 5
1 5 10
5 6
1 2 7 5
1 3 4 2
2 4 -1 10
2 5 2 4
3 4 10 1
4 5 8 5
1 5 4
3 1
1 2 -1 100
1 3 10
0 0
 
Sample Output
Case 1:
maximum height = 7
length of shortest route = 20

Case 2:
maximum height = 4
length of shortest route = 8

Case 3:
cannot reach destination

 
Source
 
Recommend
gaojie   |   We have carefully selected several similar problems for you:  2722 1690 1598 1217 1142 
 
题目大意:输入C,R,代表城市个数,道路个数,下面的R行,每行4个数,a,b,c,e,分别代表 a和b之间有路,height值是c,length值是e,当c=-1时代表没有限制
最后一行三个数代表起点、终点、height的限制,输出最大的height,如果有一样的,输出最小的总length

思路:这题既要控制最短路,也要控制height值的最大,总思路就是二分+最短路。

二分控制最大的height,最短路控制最小的路径。  值得一提的是这题格式很严格,写不对就是wa...不会PE,  还有时限卡的很紧,能优化的最好都优化了

具体看代码

#include<iostream>
#include<string.h>
#include<map>
#include<cstdio>
#include<cstring>
#include<stdio.h>
#include<cmath>
#include<ctype.h>
#include<math.h>
#include<algorithm>
#include<set>
#include<queue>
typedef long long ll;
using namespace std;
const ll mod=1e9+;
const int maxn=1e3+;
const int maxk=5e3+;
const int maxx=1e4+;
const ll maxe=+;
#define INF 0x3f3f3f3f3f3f
#define Lson l,mid,rt<<1
#define Rson mid+1,r,rt<<1|1
int d[maxn];//用来存储起点到该点的最短距离,初始化为足够大
int height[maxn][maxn],le[maxn][maxn];//两点间的height,length
int C,R,S,E,limit,max_he,min_le,he;//
bool vis[maxn];//是否访问过,初始化false
void init()
{
//memset(height,-1,sizeof(height));
for(int i=;i<=C;i++)
{
for(int j=;j<=i;j++)
{
le[i][j]=le[j][i]=mod;
height[i][j]=-;
}
}
}
bool solve(int mid)
{
memset(vis,false,sizeof(vis));
for(int i=;i<=C;i++)
{
if(height[S][i]>=mid) d[i]=le[S][i];
else d[i]=mod;
//d[i]=mod;
//vis[i]=false;
}
//d[S]=0;
//he=mod;
while(true)
{
int flag=-;
for(int i=;i<=C;i++)
{
if(!vis[i]&&d[i]!=mod&&(flag==-||d[i]<d[flag]))//没有访问过并且距离不等于mod,因为等于mod代表当前不能走
flag=i;
}
if(flag==-) break;
if(flag==E) return d[flag]!=mod;//这里也是一步优化,只要走到了结束点就行了
vis[flag]=true;
for(int i=;i<=C;i++)
{
//if(le[i][flag]>mid) continue;
if(height[i][flag]<mid) continue;
d[i]=min(d[i],d[flag]+le[flag][i]);
//he=min(he,height[i][flag]);
//d[i]=min(d[i],d[flag]+le[flag][i]);
}
}
return d[E]!=mod;
}
int main()
{
int ca=;
//while(cin>>C>>R)
while(scanf("%d%d",&C,&R)!=EOF)
{ if(C==&&R==) break;
if(ca!=) printf("\n");//这个好像一定要放在break的后面,反正我放在前面wa了
init();
int a,b,c,e;
for(int i=;i<R;i++)
{
scanf("%d%d%d%d",&a,&b,&c,&e);
//cin>>a>>b>>c>>e;
if(c==-) c=mod;//c=-1的话,初始化为无穷大
height[a][b]=c;
height[b][a]=c;
le[a][b]=e;
le[b][a]=e;
}
//cin>>S>>E>>limit;
scanf("%d%d%d",&S,&E,&limit);
int l=,r=limit;
min_le=,max_he=;
while(l<=r)//从0~imit开始二分
{
int mid=(l+r)/;
if(solve(mid))//mid值可以满足,寻求更大的
{
max_he=mid;
min_le=d[E];
l=mid+;
}
else//不能满足,寻求小的
r=mid-;
}
printf("Case %d:\n",ca++);
if(min_le+max_he==) printf("cannot reach destination\n");
else
{
printf("maximum height = %d\n",max_he);
printf("length of shortest route = %d\n",min_le);
} }
return ;
}

UVALive - 4223(hdu 2926)的更多相关文章

  1. UVALive 4223 / HDU 2962 spfa + 二分

    Trucking Problem Description A certain local trucking company would like to transport some goods on ...

  2. UVALive 4223 Trucking 二分+spfa

    Trucking 题目连接: https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8& ...

  3. UVALive - 4223,hdu2962(简单dijkstra)

    Trucking Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  4. 二分+最短路 UVALive - 4223

    题目链接:https://vjudge.net/contest/244167#problem/E 这题做了好久都还是超时,看了博客才发现可以用二分+最短路(dijkstra和spfa都可以),也可以用 ...

  5. bzoj千题计划210:bzoj2642 | Poj3968 | UVALive 4992| hdu 3761 Jungle Outpost

    http://www.lydsy.com/JudgeOnline/problem.php?id=2642 题意: n个瞭望台,形成一个凸n边形.这些瞭望台的保护范围是这个凸包内的任意点. 敌人进攻时, ...

  6. UVALive 4225 / HDU 2964 Prime Bases 贪心

    Prime Bases Problem Description Given any integer base b >= 2, it is well known that every positi ...

  7. UVALive 4222 /HDU 2961 Dance 大模拟

    Dance Problem Description For a dance to be proper in the Altered Culture of Machinema, it must abid ...

  8. UVALive 4192/HDU 2959 Close Enough Computations 数学

    Close Enough Computations Problem Description The nutritional food label has become ubiquitous. A sa ...

  9. 【ACM】那些年,我们挖(WA)过的最短路

    不定时更新博客,该博客仅仅是一篇关于最短路的题集,题目顺序随机. 算法思想什么的,我就随便说(复)说(制)咯: Dijkstra算法:以起始点为中心向外层层扩展,直到扩展到终点为止.有贪心的意思. 大 ...

随机推荐

  1. 深入理解javascript中的立即执行函数

    这篇文章主要介绍了深入理解javascript中的立即执行函数,立即执行函数也叫立即调用函数,通常它的写法是用(function(){…})()包住业务代码,使用jquery时比较常见,需要的朋友可以 ...

  2. fastjson 使用笔记

    1.string转json String params={'key1':'50001','key2':10007700'}Map<String, String> a = JSON.pars ...

  3. VS Code:快捷方式

    转于:vscode: Visual Studio Code 常用快捷键 博主:魚魚 更多操作参见官网:https://code.visualstudio.com/docs/getstarted/key ...

  4. Ruby中的%表示法

     %{String}  用于创建一个使用双引号括起来的字符串,这个表示法与%Q{String}完全一样 result = %{hello} puts "result is: #{result ...

  5. 关于surf显示立体图,可视化分析数据

    如果想判断一个点(x,y)对应的ZV值是否在平面上方.平面上.平面下方,只要将(x,y)带入方程,得到z. 如果ZV大于>Z,则在平面上方:如果ZV<Z,则在方面下方:若ZV=Z,则在平面 ...

  6. 关于Windows文件读写_暗涌_新浪博客

    关于Windows文件读写_暗涌_新浪博客     这几天在研究怎么才能加快windows文件读写速度,搜了很多文章,MSDN也看了不少.稍微给大家分享一下.     限制windows文件读写速度的 ...

  7. CSS如何计算优先级?如何计算权重?

    (1) 优先级就近原则,同权重以最近者为准 载入样式以最后载入的样式为准: 同权重下:内联样式表(标签内部) > 嵌入样式表(当前文件) > 外部样式表(外部文件) !import > ...

  8. linux 下 安装mysql

    安装之前,因为redhat 是yum自带的,但是不能使用,因为要交钱,还要订阅,所以需要卸载,重新安装163提供的yum 在另外一篇文章介绍 yum list mysql* 列出所有关于mysal的安 ...

  9. java电子书chm全套下载

    链接:http://pan.baidu.com/s/1qWmMlYk 密码:us3x 版权声明:本文为博主原创文章,未经博主允许不得转载.

  10. CentOS 7 配置 samba服务器

    一.在服务器端上安装软件并进行相关配置(以下操作需用用户root进行): 1.安装samba: yum -y install samba samba-client 2.启动服务并设置开机启动: sys ...