---恢复内容开始---

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2962

Trucking

Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 11428    Accepted Submission(s): 1104

Problem Description
A certain local trucking company would like to transport some goods on a cargo truck from one place to another. It is desirable to transport as much goods as possible each trip. Unfortunately, one cannot always use the roads in the shortest route: some roads may have obstacles (e.g. bridge overpass, tunnels) which limit heights of the goods transported. Therefore, the company would like to transport as much as possible each trip, and then choose the shortest route that can be used to transport that amount.

For the given cargo truck, maximizing the height of the goods transported is equivalent to maximizing the amount of goods transported. For safety reasons, there is a certain height limit for the cargo truck which cannot be exceeded.

 
Input
The input consists of a number of cases. Each case starts with two integers, separated by a space, on a line. These two integers are the number of cities (C) and the number of roads (R). There are at most 1000 cities, numbered from 1. This is followed by R lines each containing the city numbers of the cities connected by that road, the maximum height allowed on that road, and the length of that road. The maximum height for each road is a positive integer, except that a height of -1 indicates that there is no height limit on that road. The length of each road is a positive integer at most 1000. Every road can be travelled in both directions, and there is at most one road connecting each distinct pair of cities. Finally, the last line of each case consists of the start and end city numbers, as well as the height limit (a positive integer) of the cargo truck. The input terminates when C = R = 0.
 
Output
For each case, print the case number followed by the maximum height of the cargo truck allowed and the length of the shortest route. Use the format as shown in the sample output. If it is not possible to reach the end city from the start city, print "cannot reach destination" after the case number. Print a blank line between the output of the cases.
 
Sample Input
5 6
1 2 7 5
1 3 4 2
2 4 -1 10
2 5 2 4
3 4 10 1
4 5 8 5
1 5 10
5 6
1 2 7 5
1 3 4 2
2 4 -1 10
2 5 2 4
3 4 10 1
4 5 8 5
1 5 4
3 1
1 2 -1 100
1 3 10
0 0
 
Sample Output
Case 1:
maximum height = 7
length of shortest route = 20

Case 2:
maximum height = 4
length of shortest route = 8

Case 3:
cannot reach destination

 
Source
 
Recommend
gaojie   |   We have carefully selected several similar problems for you:  2722 1690 1598 1217 1142 
 
题目大意:输入C,R,代表城市个数,道路个数,下面的R行,每行4个数,a,b,c,e,分别代表 a和b之间有路,height值是c,length值是e,当c=-1时代表没有限制
最后一行三个数代表起点、终点、height的限制,输出最大的height,如果有一样的,输出最小的总length

思路:这题既要控制最短路,也要控制height值的最大,总思路就是二分+最短路。

二分控制最大的height,最短路控制最小的路径。  值得一提的是这题格式很严格,写不对就是wa...不会PE,  还有时限卡的很紧,能优化的最好都优化了

具体看代码

#include<iostream>
#include<string.h>
#include<map>
#include<cstdio>
#include<cstring>
#include<stdio.h>
#include<cmath>
#include<ctype.h>
#include<math.h>
#include<algorithm>
#include<set>
#include<queue>
typedef long long ll;
using namespace std;
const ll mod=1e9+;
const int maxn=1e3+;
const int maxk=5e3+;
const int maxx=1e4+;
const ll maxe=+;
#define INF 0x3f3f3f3f3f3f
#define Lson l,mid,rt<<1
#define Rson mid+1,r,rt<<1|1
int d[maxn];//用来存储起点到该点的最短距离,初始化为足够大
int height[maxn][maxn],le[maxn][maxn];//两点间的height,length
int C,R,S,E,limit,max_he,min_le,he;//
bool vis[maxn];//是否访问过,初始化false
void init()
{
//memset(height,-1,sizeof(height));
for(int i=;i<=C;i++)
{
for(int j=;j<=i;j++)
{
le[i][j]=le[j][i]=mod;
height[i][j]=-;
}
}
}
bool solve(int mid)
{
memset(vis,false,sizeof(vis));
for(int i=;i<=C;i++)
{
if(height[S][i]>=mid) d[i]=le[S][i];
else d[i]=mod;
//d[i]=mod;
//vis[i]=false;
}
//d[S]=0;
//he=mod;
while(true)
{
int flag=-;
for(int i=;i<=C;i++)
{
if(!vis[i]&&d[i]!=mod&&(flag==-||d[i]<d[flag]))//没有访问过并且距离不等于mod,因为等于mod代表当前不能走
flag=i;
}
if(flag==-) break;
if(flag==E) return d[flag]!=mod;//这里也是一步优化,只要走到了结束点就行了
vis[flag]=true;
for(int i=;i<=C;i++)
{
//if(le[i][flag]>mid) continue;
if(height[i][flag]<mid) continue;
d[i]=min(d[i],d[flag]+le[flag][i]);
//he=min(he,height[i][flag]);
//d[i]=min(d[i],d[flag]+le[flag][i]);
}
}
return d[E]!=mod;
}
int main()
{
int ca=;
//while(cin>>C>>R)
while(scanf("%d%d",&C,&R)!=EOF)
{ if(C==&&R==) break;
if(ca!=) printf("\n");//这个好像一定要放在break的后面,反正我放在前面wa了
init();
int a,b,c,e;
for(int i=;i<R;i++)
{
scanf("%d%d%d%d",&a,&b,&c,&e);
//cin>>a>>b>>c>>e;
if(c==-) c=mod;//c=-1的话,初始化为无穷大
height[a][b]=c;
height[b][a]=c;
le[a][b]=e;
le[b][a]=e;
}
//cin>>S>>E>>limit;
scanf("%d%d%d",&S,&E,&limit);
int l=,r=limit;
min_le=,max_he=;
while(l<=r)//从0~imit开始二分
{
int mid=(l+r)/;
if(solve(mid))//mid值可以满足,寻求更大的
{
max_he=mid;
min_le=d[E];
l=mid+;
}
else//不能满足,寻求小的
r=mid-;
}
printf("Case %d:\n",ca++);
if(min_le+max_he==) printf("cannot reach destination\n");
else
{
printf("maximum height = %d\n",max_he);
printf("length of shortest route = %d\n",min_le);
} }
return ;
}

UVALive - 4223(hdu 2926)的更多相关文章

  1. UVALive 4223 / HDU 2962 spfa + 二分

    Trucking Problem Description A certain local trucking company would like to transport some goods on ...

  2. UVALive 4223 Trucking 二分+spfa

    Trucking 题目连接: https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8& ...

  3. UVALive - 4223,hdu2962(简单dijkstra)

    Trucking Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  4. 二分+最短路 UVALive - 4223

    题目链接:https://vjudge.net/contest/244167#problem/E 这题做了好久都还是超时,看了博客才发现可以用二分+最短路(dijkstra和spfa都可以),也可以用 ...

  5. bzoj千题计划210:bzoj2642 | Poj3968 | UVALive 4992| hdu 3761 Jungle Outpost

    http://www.lydsy.com/JudgeOnline/problem.php?id=2642 题意: n个瞭望台,形成一个凸n边形.这些瞭望台的保护范围是这个凸包内的任意点. 敌人进攻时, ...

  6. UVALive 4225 / HDU 2964 Prime Bases 贪心

    Prime Bases Problem Description Given any integer base b >= 2, it is well known that every positi ...

  7. UVALive 4222 /HDU 2961 Dance 大模拟

    Dance Problem Description For a dance to be proper in the Altered Culture of Machinema, it must abid ...

  8. UVALive 4192/HDU 2959 Close Enough Computations 数学

    Close Enough Computations Problem Description The nutritional food label has become ubiquitous. A sa ...

  9. 【ACM】那些年,我们挖(WA)过的最短路

    不定时更新博客,该博客仅仅是一篇关于最短路的题集,题目顺序随机. 算法思想什么的,我就随便说(复)说(制)咯: Dijkstra算法:以起始点为中心向外层层扩展,直到扩展到终点为止.有贪心的意思. 大 ...

随机推荐

  1. BZOJ1727:[Usaco2006 Open]The Milk Queue挤奶队列

    我对\(Jhonson\)算法的理解:https://www.cnblogs.com/AKMer/p/9863620.html 题目传送门:https://www.lydsy.com/JudgeOnl ...

  2. JVM插庄之二:Java agent基础原理

    javaagent 简介 Javaagent 只要作用在class被加载之前对其加载,插入我们需要添加的字节码. Javaagent面向的是我们java程序员,而且agent都是用java编写的,不需 ...

  3. MongoDB优化之三:如何排查MongoDB CPU利用率高的问题

    遇到这个问题,99.9999% 的可能性是「用户使用上不合理导致」,本文主要介绍从应用的角度如何排查 MongoDB CPU 利用率高的问题. Step1: 分析数据库正在执行的请求 用户可以通过 M ...

  4. ANDROID开发中资源文件和资源ID是如何映射的

    http://tweetyf.org/2013/02/mapping_between_res_resid_android.html

  5. 关于SCANF接受的一些总结

    当C语言中SCANF函数接受到非指定类型的参数时,如:定义为整形输入为字符串,函数会返回一个失败的BOOL类型,以此可以判断是否输入的为指定类型. 当发生一次输入错误的时候,如果想再次进行输入则需要使 ...

  6. 关于overflow:hidden (转)

    关于overflow:hidden   (本文只针对hidden这个值的用处进行阐述) 关于overflow:hidden;很多人都知道他是溢出隐藏的一个属性,但是并不是很多人知道它的一些神奇的地方! ...

  7. Entity Framework Code-First(5):Code First Conventions

    Code First Conventions: We have seen how EF Code-First creates DB tables from domain classes in the ...

  8. jquery 规范

    使用单引号 不推荐 $("div").html("<img src='1.jpg'>"); 推荐 $('div').html('<img sr ...

  9. ES Docs-2:Exploring ES cluster

    The REST API Now that we have our node (and cluster) up and running, the next step is to understand ...

  10. LENOVO服务器批量升级BMC固件

    需求:通过服务器远程管理IP批量升级IMM.UEFI固件 工具:asu64.ipmitool.iflash64.cdc_interface.sh 下载:http://pan.baidu.com/s/1 ...