给定一棵n个点并且有边权的树,每个点的权值为该点能走的最远长度,并输入m个询问,每次询问最多有多少个编号连续的点,他们的最大最小点权差小于等于Q。N<=50000 M<=500 Q<=10000000

  我们知道一个点能走的最远端点一定是树的直径的端点,所以我们只需从树的直径两端点dfs,就可以求出每个点能到的最远长度。。然后rmq+尺取即可。

这道题如果用系统的log会tle,所以必须手打log2。原理会再放一篇博客。

 #include <cctype>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
using namespace std; const int maxn=, maxmi=, INF=1e9;
//const double exp=1e-6;
int n, m, cntedge, maxdist, maxdistpos;
int fir[maxn], val[maxn];
int fmaxm[maxn][maxmi], fminm[maxn][maxmi];
struct Edge{
int to, v, next;
};
Edge edge[maxn]; void addedge(int x, int y, int z){
++cntedge;
Edge &nowedge1=edge[cntedge];
nowedge1.to=y, nowedge1.v=z, nowedge1.next=fir[x];
fir[x]=cntedge;
++cntedge;
Edge &nowedge2=edge[cntedge];
nowedge2.to=x, nowedge2.v=z, nowedge2.next=fir[y];
fir[y]=cntedge;
return;
} void dfs(int now, int par, int dist){
int nowedge, nowson;
nowedge=fir[now];
while (nowedge){
nowson=edge[nowedge].to;
if (nowson==par){
nowedge=edge[nowedge].next;
continue;
}
dfs(nowson, now, dist+edge[nowedge].v);
nowedge=edge[nowedge].next;
}
if (dist>val[now]) val[now]=dist;
if (dist>maxdist){
maxdist=dist;
maxdistpos=now;
}
return;
} int flog2(float x) {
return ((unsigned&)x>>&)-;
}
int dvalue(int head, int tail){
int maxm=, minm=1e9;
int lognum=flog2(tail-head+);
maxm=max(fmaxm[head][lognum], fmaxm[tail-(<<lognum)+][lognum]);
minm=min(fminm[head][lognum], fminm[tail-(<<lognum)+][lognum]);
return maxm-minm;
} void init(){
memset(fir, , sizeof(fir));
memset(val, , sizeof(val));
for (int i=; i<maxn; ++i){
edge[i].next=edge[i].to=edge[i].v=;
}
cntedge=;
} int ri(){
char c;
int flag=, r=;
do{
c=getchar();
if (c=='-') flag=-;
} while (!isgraph(c));
do{
r=r*+c-;
c=getchar();
} while (isgraph(c));
return r*flag;
} int main(){
int x, y, z;
while (~scanf("%d%d", &n, &m)){
if (n==&&m==) break;
init();
for (int i=; i<n; ++i){
x=ri(), y=ri(), z=ri();
addedge(x, y, z);
}
int s=, far1, far2;
maxdist=, dfs(s, , );
far1=maxdistpos;
maxdist=, dfs(far1, , );
far2=maxdistpos;
maxdist=, dfs(far2, , );
//for (int i=1; i<=n; ++i)
//printf("%d\n", val[i]);
int q=;
for (int i=; i<=n; ++i)
fmaxm[i][]=fminm[i][]=val[i];
for (int i=; i<maxmi; ++i){
for (int j=; j<=n-(<<i)+; ++j){
fmaxm[j][i]=max(fmaxm[j][i-], fmaxm[j+(<<(i-))][i-]);
fminm[j][i]=min(fminm[j][i-], fminm[j+(<<(i-))][i-]);
}
}
int h=, t=, maxm=;
for (int i=; i<m; ++i){
q=ri();
h=, t=, maxm=;
while (t<=n){
if (dvalue(h, t)<=q) ++t;
else ++h;
if ((t-h)>maxm) maxm=t-h;
}
printf("%d\n", maxm);
}
}
return ;
}

树的直径+rmq+(伪)单调队列 -HDU4123的更多相关文章

  1. 【bzoj1999】[Noip2007]Core树网的核 树的直径+双指针法+单调队列

    题目描述 给出一棵树,定义一个点到一条路径的距离为这个点到这条路径上所有点的距离的最小值.求一条长度不超过s的路径,使得所有点到这条路径的距离的最大值最小. 输入 包含n行: 第1行,两个正整数n和s ...

  2. hdu 4123 Bob’s Race 树的直径+rmq+尺取

    Bob’s Race Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Probl ...

  3. 51Nod.1766.树上最远点对(树的直径 RMQ 线段树/ST表)

    题目链接 \(Description\) 给定一棵树.每次询问给定\(a\sim b,c\sim d\)两个下标区间,从这两个区间中各取一个点,使得这两个点距离最远.输出最远距离. \(n,q\leq ...

  4. HDU - 5289 Assignment (RMQ+二分)(单调队列)

    题目链接: Assignment  题意: 给出一个数列,问其中存在多少连续子序列,使得子序列的最大值-最小值<k. 题解: RMQ先处理出每个区间的最大值和最小值(复杂度为:n×logn),相 ...

  5. 求最长的任意两元素差不超过M的子段——双指针+单调队列hdu4123

    换根dp的部分比较容易,难点在于求求最长的任意两元素差不超过M的子段 首先会想到双指针维护(尺取法),如果p1,p2间的max-min>M,那么p1向右移动,直到p1,p2间的max-min&g ...

  6. 洛谷 P2216 [HAOI2007]理想的正方形 || 二维RMQ的单调队列

    题目 这个题的算法核心就是求出以i,j为左上角,边长为n的矩阵中最小值和最大值.最小和最大值的求法类似. 单调队列做法: 以最小值为例: q1[i][j]表示第i行上,从j列开始的n列的最小值.$q1 ...

  7. HDU 4123 Bob’s Race 树的直径 RMQ

    Bob’s Race Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=41 ...

  8. 【HDU6701】Make Rounddog Happy【权值线段树+双向单调队列】

    题意:给你一个序列,求满足要求的子序列个数,其中要求为: 1.子序列的max-子序列长度len<=k 2.子序列中不出现重复的数字 题解:首先看到子序列max,很容易想到枚举最大值然后分治,这个 ...

  9. cf1208 E Let Them Slide(差分+RMQ\单调队列)

    题意 如题目的图所示,每行都可以左右移动,但是数字不允许断开,且不许越界(宽度为w). 单独求每一列的最大的和为多少. 思路 对于每一列来说,在每一行上都有一个可以取到的区间, 所以,对于一列来说,答 ...

随机推荐

  1. VScode 为 *.cu文件 添加高亮及c++ intelligence相关操作的方法

    问题:*.cu在VScode不能像*.cc或*.cpp一样在c++及c++ intelligence插件有关键字的高亮以及go to definition等的操作 解决方案:添加*.cu与*.cpp文 ...

  2. linux命令学习笔记(9):touch 命令

    linux的touch命令不常用,一般在使用make的时候可能会用到,用来修改文件时间戳,或者新建一个不存在的文件. .命令格式: touch [选项]... 文件... .命令参数: -a 或--t ...

  3. STL stl_uninitialized.h

    stl_uninitialized.h // Filename: stl_uninitialized.h // Comment By: 凝霜 // E-mail: mdl2009@vip.qq.com ...

  4. Activity间数据传输

    当对Android有一些了解后,不难发现,Android程序UI框架接近于Web页面的概念.每一个用于呈现页面的组件,Activity,都是彼此独立的,它们通过系统核心来调度整合,彼此之间的通过Int ...

  5. 重写ScrollView实现两个ScrollView的同步滚动显示

    1.背景介绍 最近项目用到两个ScrollView的同步显示,即拖动左边的ScrollView滚动的同时,实现右边的ScrollView同步滚动.此种情形常用在复杂界面布局中,比如左边的ScrollV ...

  6. 输入框input内容变化与onpropertychange事件的兼容

    一.输入框常用的几个事件 onblur 元素失去焦点. onchange 域的内容被改变. onclick 当用户点击某个对象时调用的事件句柄. ondblclick 当用户双击某个对象时调用的事件句 ...

  7. Java集合操作类Collections的一些常用方法

    public static void main(String[] args) { List<Integer> list = new ArrayList<Integer>(); ...

  8. 非系统数据文件损坏,rman备份恢复

    实验前提:已经做好备份. SQL> col file_name for a50select file_id,file_name from dba_data_files; FILE_ID FILE ...

  9. Poj 3903 Stock Exchange(LIS)

    一.Description The world financial crisis is quite a subject. Some people are more relaxed while othe ...

  10. windows服务和进程的区别和联系

    Windows Service 是主要用于服务器环境而长期运行的应用程序, 这类程序不需要有用户界面或者任何模拟输出. 任何的用户消息通常都是记录在Windows 事件日志里.Windows Serv ...