poj2976(01分数规划)
poj2976
题意
给出 a b 数组,一共 n 对数,其中最多可以去掉 k 对,问怎样使剩下比率(原始比率是 $ \frac{\sum_{i=1}^{n} a}{\sum_{i=1}^{n} b}*100 $)最大。
分析
设 \(l=\frac{\sum a}{\sum b}\),我们要求使得 l 最大,构造新函数 \(F()={\sum a}-l*{\sum b}\),设\(D()=a-l*b\),显然 F() 是随 l 增大单调递减的,如果对于某个 l 使得 F() > 0 ,
则有 \(\frac{\sum a}{\sum b}>l\),那么我们可以知道此时存在比l更优的值(我们要 l 尽可能大);当 F() = 0 时,这个 l 即为所求值;当 F() < 0 时,无意义,此时的 l 根本取不到。
那么 F() 函数的功能是让我们可以不断逼近答案(即告诉我们后面有更优的值),如果我们现在选定了一个 l ,计算出 D 数组,从大到小选 n - k 个,这样使 F() 最大(F()越大,那么告诉我们后面存在更大的 l )。可以二分 l 当 F(l) >= 0 时,l = mid,否则,r = mid。
code
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int MAXN = 1e3 + 10;
const double INF = 1e15;
int n, k;
int a[MAXN], b[MAXN];
double d[MAXN];
int work(double rate) {
for(int i = 0; i < n; i++) {
d[i] = a[i] - rate * b[i];
}
sort(d, d + n);
double F = 0;
for(int i = n - 1; i >= k; i--) {
F += d[i];
}
return F >= 0;
}
double solve() {
double l = 0, r = 1, mid = 0;
while(r - l > 1e-5) {
mid = (l + r) / 2;
if(work(mid)) l = mid;
else r = mid;
}
return mid * 100;
}
int main() {
while(cin >> n >> k && (n + k)) {
for(int i = 0; i < n; i++) {
cin >> a[i];
}
for(int i = 0; i < n; i++) {
cin >> b[i];
}
printf("%.0f\n", solve());
}
return 0;
}
poj2976(01分数规划)的更多相关文章
- poj2976(01分数规划)
poj2976 题意 给出 a b 数组,一共 n 对数,其中最多可以去掉 k 对,问怎样使剩下比率(原始比率是 $ \frac{\sum_{i=1}^{n} a}{\sum_{i=1}^{n} b} ...
- Dropping tests [POJ2976] [01分数规划]
Description 今年有 n 场 ACM-ICPC 竞赛,小明每场都有资格参加.第 i 场竞赛共有 b[i] 道题.小明预测第 i场他能做出 a[i] 道题.为了让自己看着更“大佬”一些,小明想 ...
- [poj2976]Dropping tests(01分数规划,转化为二分解决或Dinkelbach算法)
题意:有n场考试,给出每场答对的题数a和这场一共有几道题b,求去掉k场考试后,公式.的最大值 解题关键:01分数规划,double类型二分的写法(poj崩溃,未提交) 或者r-l<=1e-3(右 ...
- POJ2976:Dropping tests(01分数规划入门)
In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cum ...
- [转]01分数规划算法 ACM 二分 Dinkelbach 最优比率生成树 最优比率环
01分数规划 前置技能 二分思想最短路算法一些数学脑细胞? 问题模型1 基本01分数规划问题 给定nn个二元组(valuei,costi)(valuei,costi),valueivaluei是选择此 ...
- POJ3621Sightseeing Cows[01分数规划 spfa(dfs)负环 ]
Sightseeing Cows Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9703 Accepted: 3299 ...
- ZOJ 2676 Network Wars ★(最小割算法介绍 && 01分数规划)
[题意]给出一个带权无向图,求割集,且割集的平均边权最小. [分析] 先尝试着用更一般的形式重新叙述本问题.设向量w表示边的权值,令向量c=(1, 1, 1, --, 1)表示选边的代价,于是原问题等 ...
- POJ 2728 Desert King ★(01分数规划介绍 && 应用の最优比率生成树)
[题意]每条路径有一个 cost 和 dist,求图中 sigma(cost) / sigma(dist) 最小的生成树. 标准的最优比率生成树,楼教主当年开场随手1YES然后把别人带错方向的题Orz ...
- 【Earthquake, 2001 Open 】 0-1 分数规划
71 奶牛施工队一场地震把约翰家园摧毁了,坚强的约翰决心重建家园.约翰已经修复了 N 个牧场,他需要再修复一些道路把它们连接起来.碰巧的是,奶牛们最近也成立了一个工程队,专门从事道路修复.而然,奶牛 ...
随机推荐
- Singleton patterns 单件(创建型模式)
1.模式分类 1.1 从目的来看: • – 创建型(Creational)模式:负责对象创建. • – 结构型(Structural)模式:处理类与对象间的组合. • ...
- springboot13 Hikari 和Introspector
SpringBoot Initializr Introspector(内省) class TestReflect { @Test fun testReflect() { //获取字节码对象 val c ...
- 《大道至简》第一章 编程的精义 java伪代码形式
愚公.这位名家身上,浓缩了项目组织者.团队经理.编程人员.技术分析师等众多角色的优秀素质. 愚公移山事件分析: 原始需求:惩山北之塞,出入之迂 项目沟通方式:聚室而某曰 项目目标:毕力平险,指通豫南, ...
- Beta
目录 过去存在的问题 任务分工 规范 后端总结 卉卉 家灿 前端总结 绪佩 青元 恺琳 宇恒 丹丹 算法&API接口 家伟 鸿杰 一好 文档&博客撰写 政演 产品功能 我们已经坐了哪些 ...
- java与C#对比文章阅读
文章:JAVA与C#的区别 讲了C#与java一些基本异同. 易语言官网有个表,比较了易语言.Java.C#的区别,比较全面可以借鉴.
- Java实现身份证号码校验
二话不说,直接上代码. package hope.identitycodecheck.demo; import java.text.DateFormat; import java.text.Simpl ...
- 重写Android相机适配不同的设备,对于相机旋转角度问题解决方案
Android开发中经常需要重写相机,由此会导致一些旋转的情况(不同的设备摄像头角度是不一样的),此处按照解决思路给出解决方案: 情形一:只需要旋转摄像头方向以及最终的照片,注意两者需要保持一致 1. ...
- 【bzoj4819】[Sdoi2017]新生舞会 分数规划+费用流
题目描述 学校组织了一次新生舞会,Cathy作为经验丰富的老学姐,负责为同学们安排舞伴.有n个男生和n个女生参加舞会买一个男生和一个女生一起跳舞,互为舞伴.Cathy收集了这些同学之间的关系,比如两个 ...
- H3C交换机端口链路聚合
H3C交换机端口链路聚合 以太网链路聚合 -- 以太网链路聚合配置命令 -- lacp system-prioritylacp system-priority命令用来配置系统的LACP优先级.undo ...
- BZOJ2208 [Jsoi2010]连通数 【图的遍历】
题目 输入格式 输入数据第一行是图顶点的数量,一个正整数N. 接下来N行,每行N个字符.第i行第j列的1表示顶点i到j有边,0则表示无边. 输出格式 输出一行一个整数,表示该图的连通数. 输入样例 3 ...