spark之scala程序开发(集群运行模式):单词出现次数统计
准备工作:
将运行Scala-Eclipse的机器节点(CloudDeskTop)内存调整至4G,因为需要在该节点上跑本地(local)Spark程序,本地Spark程序会启动Worker进程耗用大量内存资源
其余准备工作可参考:scala程序开发之单词出现次数统计(本地运行模式)
1、启动Spark集群
[hadoop@master01 install]$ cat start-total.sh
#!/bin/bash
echo "请首先确认你已经切换到hadoop用户"
#启动zookeeper集群
for node in hadoop@slave01 hadoop@slave02 hadoop@slave03;do ssh $node "source /etc/profile; cd /software/zookeeper-3.4.10/bin/; ./zkServer.sh start; jps";done #开启dfs集群
cd /software/ && start-dfs.sh && jps #开启spark集群
#启动master01的Master进程,slave节点的Worker进程
cd /software/spark-2.1.1/sbin/ && ./start-master.sh && ./start-slaves.sh && jps
#启动master02的Master进程
ssh hadoop@master02 "cd /software/spark-2.1.1/sbin/; ./start-master.sh; jps" #spark集群的日志服务,一般不开,因为比较占资源
#cd /software/spark-2.1.1/sbin/ && ./start-history-server.sh && cd - && jps
启动Spark集群的脚本:
查看master的状态:
[hadoop@master01 software]$ hdfs haadmin -getServiceState nn1
[hadoop@master01 software]$ hdfs haadmin -getServiceState nn2
需要有一个是active,否则使用如下语句进行转换:
[hadoop@master01 software]$ hdfs haadmin -transitionToActive --forceactive nn1
2、上传一个测试文件wordcount到HDFS集群
[hadoop@master02 install]$ hdfs dfs -ls /test/scala/input
Found 2 items
-rw-r--r-- 3 hadoop supergroup 156 2018-02-07 16:25 /test/scala/input/information
-rw-r--r-- 3 hadoop supergroup 156 2018-02-07 16:25 /test/scala/input/information02
[hadoop@master02 install]$ hdfs dfs -cat /test/scala/input/information
zhnag san shi yi ge hao ren
jin tian shi yi ge hao tian qi
wo zai zhe li zuo le yi ge ce shi
yi ge guan yu scala de ce shi
welcome to mmzs
欢迎 欢迎
[hadoop@master02 install]$ hdfs dfs -cat /test/scala/input/information02
zhnag san shi yi ge hao ren
jin tian shi yi ge hao tian qi
wo zai zhe li zuo le yi ge ce shi
yi ge guan yu scala de ce shi
welcome to mmzs
欢迎 欢迎
3、编写Spark的Job代码
package com.mmzs.bigdata.spark.rdd.cluster import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.hadoop.fs.FileSystem
import org.apache.hadoop.conf.Configuration
import java.net.URI
import org.apache.hadoop.fs.Path
import org.apache.spark.rdd.RDD.rddToOrderedRDDFunctions
import org.apache.spark.rdd.RDD.rddToPairRDDFunctions object WordCount {
/*
* scala中有private(本类中访问)、protected(本类和子类中访问)、默认(public工程内访问)三种访问权限
* scala类中属性的默认访问权限是private
* scala中类和方法的默认访问权限是public,但无需显式指定public,因为scala中没有这个关键字
*/
var fs:FileSystem=null; //定义一个实例块
{
val hconf:Configuration=new Configuration();
fs=FileSystem.get(new URI("hdfs://ns1/"), hconf, "hadoop");
} /**
* 主函数
* @param args
*/
def main(args: Array[String]): Unit = {
//读取spark配置文件
val conf:SparkConf = new SparkConf();
//本地测试模式
//conf.setMaster("local");
//集群测试模式
//conf.setMaster("spark://master01:7077");
//设定应用名字
conf.setAppName("Hdfs Scala Spark RDD"); //根据配置获取spark上下文对象
val sc:SparkContext = new SparkContext(conf); //使用sparkContext读取文件到内存并生成RDD对象
//指定一个输入目录即可,目录中的所有文件都将作为输入文件
val lineRdd:RDD[String] = sc.textFile("/test/scala/input");
//使用空格切分每一行的数据为单词数组,并将单词数组中的单词子串释放到外层的RDD集合中
val flatRdd:RDD[String] = lineRdd.flatMap { line => line.split(" "); }
//将RDD中的每一个单词字串转化为元组,以完成单词计数
val mapRDD:RDD[Tuple2[String, Integer]] = flatRdd.map(word=>(word,1));
//按RDD集合中每一个元组的第一个元素(即单词字串)进行分组并完成单词计数
val reduceRDD:RDD[(String, Integer)] = mapRDD.reduceByKey((pre:Integer, next:Integer)=>pre+next);
//交换元素中的key和value的位置便于后续排序
val reduceRDD02:RDD[(Integer, String)] = reduceRDD.map(tuple=>(tuple._2,tuple._1));
//根据key进行排序,第二个参数表示启动的Task数量,设置大了可能会抛出内存溢出的异常
val sortRDD:RDD[(Integer, String)] = reduceRDD02.sortByKey(false, 1);
//排好序之后将顺序换回来
val sortRDD02:RDD[(Integer, String)] = reduceRDD.map(tuple=>(tuple._2,tuple._1)); //指定一个输出目录,如果输出目录已经事先存在则应该将它删除掉
val dst:Path=new Path("/test/scala/output/");
if(fs.exists(dst)&&fs.isDirectory(dst))fs.delete(dst, true);
//将结果保存到指定路径下
reduceRDD.saveAsTextFile("/test/scala/output/"); //停止使用spark上下文对象
sc.stop();
}
}
WordCount
4、打包并提交运行Job
4.1、打包Spark代码
#在Eclipse的工程目录SparkTest下创建打包目录jarTest
[hadoop@CloudDeskTop software]$ mkdir -p /project/scala/SparkRDD/jarTest
#将Eclipse中编译好的bin目录下的com文件夹打包到工程目录下的jarTest目录下
[hadoop@CloudDeskTop software]$ cd /project/scala/SparkTest/bin
[hadoop@CloudDeskTop bin]$ pwd
/project/scala/SparkTest/bin
[hadoop@CloudDeskTop bin]$ jar -cvf /project/scala/SparkRDD/jarTest/wordcount.jar com/
4.2、提交Spark的Job
#切换到Spark安装目录下的bin目录下
[hadoop@CloudDeskTop bin]$ pwd
/software/spark-2.1.1/bin
#提交Job到Spark集群(注意:--master参数值spark://master01:7077不能以斜杠结尾)
[hadoop@CloudDeskTop bin]$ ./spark-submit --master spark://master01:7077 --class com.mmzs.bigdata.spark.rdd.cluster.WordCount /project/scala/SparkRDD/jarTest/wordcount.jar 1
-bash: ./spark-submit: 没有那个文件或目录
[hadoop@CloudDeskTop bin]$ cd /software/spark-2.1.1/bin/
[hadoop@CloudDeskTop bin]$ ./spark-submit --master spark://master01:7077 --class com.mmzs.bigdata.spark.rdd.cluster.WordCount /project/scala/SparkRDD/jarTest/wordcount.jar 1
18/02/08 15:21:49 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
18/02/08 15:21:50 INFO spark.SparkContext: Running Spark version 2.1.1
18/02/08 15:21:50 WARN spark.SparkContext: Support for Java 7 is deprecated as of Spark 2.0.0
18/02/08 15:21:50 INFO spark.SecurityManager: Changing view acls to: hadoop
18/02/08 15:21:50 INFO spark.SecurityManager: Changing modify acls to: hadoop
18/02/08 15:21:50 INFO spark.SecurityManager: Changing view acls groups to:
18/02/08 15:21:50 INFO spark.SecurityManager: Changing modify acls groups to:
18/02/08 15:21:50 INFO spark.SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(hadoop); groups with view permissions: Set(); users with modify permissions: Set(hadoop); groups with modify permissions: Set()
18/02/08 15:21:51 INFO util.Utils: Successfully started service 'sparkDriver' on port 36034.
18/02/08 15:21:51 INFO spark.SparkEnv: Registering MapOutputTracker
18/02/08 15:21:51 INFO spark.SparkEnv: Registering BlockManagerMaster
18/02/08 15:21:51 INFO storage.BlockManagerMasterEndpoint: Using org.apache.spark.storage.DefaultTopologyMapper for getting topology information
18/02/08 15:21:51 INFO storage.BlockManagerMasterEndpoint: BlockManagerMasterEndpoint up
18/02/08 15:21:51 INFO storage.DiskBlockManager: Created local directory at /tmp/blockmgr-00930396-c78b-4931-8433-409ea44280ca
18/02/08 15:21:51 INFO memory.MemoryStore: MemoryStore started with capacity 366.3 MB
18/02/08 15:21:51 INFO spark.SparkEnv: Registering OutputCommitCoordinator
18/02/08 15:21:51 INFO util.log: Logging initialized @5920ms
18/02/08 15:21:52 INFO server.Server: jetty-9.2.z-SNAPSHOT
18/02/08 15:21:52 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@7ff38263{/jobs,null,AVAILABLE,@Spark}
18/02/08 15:21:52 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@4bf57335{/jobs/json,null,AVAILABLE,@Spark}
18/02/08 15:21:52 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@5f5ec388{/jobs/job,null,AVAILABLE,@Spark}
18/02/08 15:21:52 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@467746a2{/jobs/job/json,null,AVAILABLE,@Spark}
18/02/08 15:21:52 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@40be59d2{/stages,null,AVAILABLE,@Spark}
18/02/08 15:21:52 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@10fb0b33{/stages/json,null,AVAILABLE,@Spark}
18/02/08 15:21:52 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@519c49fa{/stages/stage,null,AVAILABLE,@Spark}
18/02/08 15:21:52 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@6bbce5f1{/stages/stage/json,null,AVAILABLE,@Spark}
18/02/08 15:21:52 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@3e9c6879{/stages/pool,null,AVAILABLE,@Spark}
18/02/08 15:21:52 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@e8f000c{/stages/pool/json,null,AVAILABLE,@Spark}
18/02/08 15:21:52 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@4e4c1b4b{/storage,null,AVAILABLE,@Spark}
18/02/08 15:21:52 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@66940115{/storage/json,null,AVAILABLE,@Spark}
18/02/08 15:21:52 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@7ed33e4f{/storage/rdd,null,AVAILABLE,@Spark}
18/02/08 15:21:52 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@5e9ff595{/storage/rdd/json,null,AVAILABLE,@Spark}
18/02/08 15:21:52 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@57b439bb{/environment,null,AVAILABLE,@Spark}
18/02/08 15:21:52 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@793a50f8{/environment/json,null,AVAILABLE,@Spark}
18/02/08 15:21:52 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@639a07f5{/executors,null,AVAILABLE,@Spark}
18/02/08 15:21:52 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@158098e9{/executors/json,null,AVAILABLE,@Spark}
18/02/08 15:21:52 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@2db6f406{/executors/threadDump,null,AVAILABLE,@Spark}
18/02/08 15:21:52 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@464ecd5c{/executors/threadDump/json,null,AVAILABLE,@Spark}
18/02/08 15:21:52 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@5f8c7713{/static,null,AVAILABLE,@Spark}
18/02/08 15:21:52 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@7eddb166{/,null,AVAILABLE,@Spark}
18/02/08 15:21:52 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@ca9e09c{/api,null,AVAILABLE,@Spark}
18/02/08 15:21:52 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@64d92842{/jobs/job/kill,null,AVAILABLE,@Spark}
18/02/08 15:21:52 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@6ce238c7{/stages/stage/kill,null,AVAILABLE,@Spark}
18/02/08 15:21:52 INFO server.ServerConnector: Started Spark@7f3e9c42{HTTP/1.1}{0.0.0.0:4040}
18/02/08 15:21:52 INFO server.Server: Started @6335ms
18/02/08 15:21:52 INFO util.Utils: Successfully started service 'SparkUI' on port 4040.
18/02/08 15:21:52 INFO ui.SparkUI: Bound SparkUI to 0.0.0.0, and started at http://192.168.154.134:4040
18/02/08 15:21:52 INFO spark.SparkContext: Added JAR file:/project/scala/SparkRDD/jarTest/wordcount.jar at spark://192.168.154.134:36034/jars/wordcount.jar with timestamp 1518074512324
18/02/08 15:21:52 INFO client.StandaloneAppClient$ClientEndpoint: Connecting to master spark://master01:7077...
18/02/08 15:21:52 INFO client.TransportClientFactory: Successfully created connection to master01/192.168.154.130:7077 after 74 ms (0 ms spent in bootstraps)
18/02/08 15:21:53 INFO cluster.StandaloneSchedulerBackend: Connected to Spark cluster with app ID app-20180208152153-0011
18/02/08 15:21:53 INFO client.StandaloneAppClient$ClientEndpoint: Executor added: app-20180208152153-0011/0 on worker-20180208121809-192.168.154.133-49922 (192.168.154.133:49922) with 4 cores
18/02/08 15:21:53 INFO cluster.StandaloneSchedulerBackend: Granted executor ID app-20180208152153-0011/0 on hostPort 192.168.154.133:49922 with 4 cores, 1024.0 MB RAM
18/02/08 15:21:53 INFO client.StandaloneAppClient$ClientEndpoint: Executor added: app-20180208152153-0011/1 on worker-20180208121818-192.168.154.132-43679 (192.168.154.132:43679) with 4 cores
18/02/08 15:21:53 INFO cluster.StandaloneSchedulerBackend: Granted executor ID app-20180208152153-0011/1 on hostPort 192.168.154.132:43679 with 4 cores, 1024.0 MB RAM
18/02/08 15:21:53 INFO client.StandaloneAppClient$ClientEndpoint: Executor added: app-20180208152153-0011/2 on worker-20180208121826-192.168.154.131-56071 (192.168.154.131:56071) with 4 cores
18/02/08 15:21:53 INFO cluster.StandaloneSchedulerBackend: Granted executor ID app-20180208152153-0011/2 on hostPort 192.168.154.131:56071 with 4 cores, 1024.0 MB RAM
18/02/08 15:21:53 INFO util.Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 35028.
18/02/08 15:21:53 INFO netty.NettyBlockTransferService: Server created on 192.168.154.134:35028
18/02/08 15:21:53 INFO storage.BlockManager: Using org.apache.spark.storage.RandomBlockReplicationPolicy for block replication policy
18/02/08 15:21:53 INFO storage.BlockManagerMaster: Registering BlockManager BlockManagerId(driver, 192.168.154.134, 35028, None)
18/02/08 15:21:53 INFO storage.BlockManagerMasterEndpoint: Registering block manager 192.168.154.134:35028 with 366.3 MB RAM, BlockManagerId(driver, 192.168.154.134, 35028, None)
18/02/08 15:21:53 INFO client.StandaloneAppClient$ClientEndpoint: Executor updated: app-20180208152153-0011/0 is now RUNNING
18/02/08 15:21:53 INFO client.StandaloneAppClient$ClientEndpoint: Executor updated: app-20180208152153-0011/2 is now RUNNING
18/02/08 15:21:53 INFO client.StandaloneAppClient$ClientEndpoint: Executor updated: app-20180208152153-0011/1 is now RUNNING
18/02/08 15:21:53 INFO storage.BlockManagerMaster: Registered BlockManager BlockManagerId(driver, 192.168.154.134, 35028, None)
18/02/08 15:21:53 INFO storage.BlockManager: Initialized BlockManager: BlockManagerId(driver, 192.168.154.134, 35028, None)
18/02/08 15:21:53 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@3589f0{/metrics/json,null,AVAILABLE,@Spark}
18/02/08 15:21:55 INFO scheduler.EventLoggingListener: Logging events to hdfs://ns1/sparkLog/app-20180208152153-0011
18/02/08 15:21:55 INFO cluster.StandaloneSchedulerBackend: SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.0
18/02/08 15:21:57 INFO memory.MemoryStore: Block broadcast_0 stored as values in memory (estimated size 202.4 KB, free 366.1 MB)
18/02/08 15:21:57 INFO memory.MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 23.8 KB, free 366.1 MB)
18/02/08 15:21:57 INFO storage.BlockManagerInfo: Added broadcast_0_piece0 in memory on 192.168.154.134:35028 (size: 23.8 KB, free: 366.3 MB)
18/02/08 15:21:57 INFO spark.SparkContext: Created broadcast 0 from textFile at WordCount.scala:46
18/02/08 15:21:58 INFO mapred.FileInputFormat: Total input paths to process : 2
18/02/08 15:21:58 INFO Configuration.deprecation: mapred.tip.id is deprecated. Instead, use mapreduce.task.id
18/02/08 15:21:58 INFO Configuration.deprecation: mapred.task.id is deprecated. Instead, use mapreduce.task.attempt.id
18/02/08 15:21:58 INFO Configuration.deprecation: mapred.task.is.map is deprecated. Instead, use mapreduce.task.ismap
18/02/08 15:21:58 INFO Configuration.deprecation: mapred.task.partition is deprecated. Instead, use mapreduce.task.partition
18/02/08 15:21:58 INFO Configuration.deprecation: mapred.job.id is deprecated. Instead, use mapreduce.job.id
18/02/08 15:21:58 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1
18/02/08 15:21:59 INFO spark.SparkContext: Starting job: saveAsTextFile at WordCount.scala:64
18/02/08 15:21:59 INFO scheduler.DAGScheduler: Registering RDD 3 (map at WordCount.scala:50)
18/02/08 15:21:59 INFO scheduler.DAGScheduler: Got job 0 (saveAsTextFile at WordCount.scala:64) with 2 output partitions
18/02/08 15:21:59 INFO scheduler.DAGScheduler: Final stage: ResultStage 1 (saveAsTextFile at WordCount.scala:64)
18/02/08 15:21:59 INFO scheduler.DAGScheduler: Parents of final stage: List(ShuffleMapStage 0)
18/02/08 15:21:59 INFO scheduler.DAGScheduler: Missing parents: List(ShuffleMapStage 0)
18/02/08 15:21:59 INFO scheduler.DAGScheduler: Submitting ShuffleMapStage 0 (MapPartitionsRDD[3] at map at WordCount.scala:50), which has no missing parents
18/02/08 15:21:59 INFO memory.MemoryStore: Block broadcast_1 stored as values in memory (estimated size 4.4 KB, free 366.1 MB)
18/02/08 15:21:59 INFO memory.MemoryStore: Block broadcast_1_piece0 stored as bytes in memory (estimated size 2.5 KB, free 366.1 MB)
18/02/08 15:21:59 INFO storage.BlockManagerInfo: Added broadcast_1_piece0 in memory on 192.168.154.134:35028 (size: 2.5 KB, free: 366.3 MB)
18/02/08 15:21:59 INFO spark.SparkContext: Created broadcast 1 from broadcast at DAGScheduler.scala:996
18/02/08 15:21:59 INFO scheduler.DAGScheduler: Submitting 2 missing tasks from ShuffleMapStage 0 (MapPartitionsRDD[3] at map at WordCount.scala:50)
18/02/08 15:21:59 INFO scheduler.TaskSchedulerImpl: Adding task set 0.0 with 2 tasks
18/02/08 15:22:07 INFO cluster.CoarseGrainedSchedulerBackend$DriverEndpoint: Registered executor NettyRpcEndpointRef(null) (192.168.154.133:42992) with ID 0
18/02/08 15:22:07 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, 192.168.154.133, executor 0, partition 0, ANY, 6045 bytes)
18/02/08 15:22:07 INFO scheduler.TaskSetManager: Starting task 1.0 in stage 0.0 (TID 1, 192.168.154.133, executor 0, partition 1, ANY, 6047 bytes)
18/02/08 15:22:08 INFO cluster.CoarseGrainedSchedulerBackend$DriverEndpoint: Registered executor NettyRpcEndpointRef(null) (192.168.154.131:43045) with ID 2
18/02/08 15:22:08 INFO storage.BlockManagerMasterEndpoint: Registering block manager 192.168.154.133:36839 with 413.9 MB RAM, BlockManagerId(0, 192.168.154.133, 36839, None)
18/02/08 15:22:08 INFO storage.BlockManagerMasterEndpoint: Registering block manager 192.168.154.131:39804 with 413.9 MB RAM, BlockManagerId(2, 192.168.154.131, 39804, None)
18/02/08 15:22:09 INFO cluster.CoarseGrainedSchedulerBackend$DriverEndpoint: Registered executor NettyRpcEndpointRef(null) (192.168.154.132:50642) with ID 1
18/02/08 15:22:09 INFO storage.BlockManagerMasterEndpoint: Registering block manager 192.168.154.132:53076 with 413.9 MB RAM, BlockManagerId(1, 192.168.154.132, 53076, None)
18/02/08 15:22:10 INFO storage.BlockManagerInfo: Added broadcast_1_piece0 in memory on 192.168.154.133:36839 (size: 2.5 KB, free: 413.9 MB)
18/02/08 15:22:10 INFO storage.BlockManagerInfo: Added broadcast_0_piece0 in memory on 192.168.154.133:36839 (size: 23.8 KB, free: 413.9 MB)
18/02/08 15:22:19 INFO scheduler.TaskSetManager: Finished task 1.0 in stage 0.0 (TID 1) in 11109 ms on 192.168.154.133 (executor 0) (1/2)
18/02/08 15:22:19 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 11280 ms on 192.168.154.133 (executor 0) (2/2)
18/02/08 15:22:19 INFO scheduler.DAGScheduler: ShuffleMapStage 0 (map at WordCount.scala:50) finished in 19.217 s
18/02/08 15:22:19 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool
18/02/08 15:22:19 INFO scheduler.DAGScheduler: looking for newly runnable stages
18/02/08 15:22:19 INFO scheduler.DAGScheduler: running: Set()
18/02/08 15:22:19 INFO scheduler.DAGScheduler: waiting: Set(ResultStage 1)
18/02/08 15:22:19 INFO scheduler.DAGScheduler: failed: Set()
18/02/08 15:22:19 INFO scheduler.DAGScheduler: Submitting ResultStage 1 (MapPartitionsRDD[8] at saveAsTextFile at WordCount.scala:64), which has no missing parents
18/02/08 15:22:19 INFO memory.MemoryStore: Block broadcast_2 stored as values in memory (estimated size 74.2 KB, free 366.0 MB)
18/02/08 15:22:19 INFO memory.MemoryStore: Block broadcast_2_piece0 stored as bytes in memory (estimated size 27.0 KB, free 366.0 MB)
18/02/08 15:22:19 INFO storage.BlockManagerInfo: Added broadcast_2_piece0 in memory on 192.168.154.134:35028 (size: 27.0 KB, free: 366.2 MB)
18/02/08 15:22:19 INFO spark.SparkContext: Created broadcast 2 from broadcast at DAGScheduler.scala:996
18/02/08 15:22:19 INFO scheduler.DAGScheduler: Submitting 2 missing tasks from ResultStage 1 (MapPartitionsRDD[8] at saveAsTextFile at WordCount.scala:64)
18/02/08 15:22:19 INFO scheduler.TaskSchedulerImpl: Adding task set 1.0 with 2 tasks
18/02/08 15:22:19 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 1.0 (TID 2, 192.168.154.133, executor 0, partition 0, NODE_LOCAL, 5819 bytes)
18/02/08 15:22:19 INFO scheduler.TaskSetManager: Starting task 1.0 in stage 1.0 (TID 3, 192.168.154.133, executor 0, partition 1, NODE_LOCAL, 5819 bytes)
18/02/08 15:22:19 INFO storage.BlockManagerInfo: Added broadcast_2_piece0 in memory on 192.168.154.133:36839 (size: 27.0 KB, free: 413.9 MB)
18/02/08 15:22:19 INFO spark.MapOutputTrackerMasterEndpoint: Asked to send map output locations for shuffle 0 to 192.168.154.133:42992
18/02/08 15:22:19 INFO spark.MapOutputTrackerMaster: Size of output statuses for shuffle 0 is 155 bytes
18/02/08 15:22:21 INFO scheduler.TaskSetManager: Finished task 1.0 in stage 1.0 (TID 3) in 1896 ms on 192.168.154.133 (executor 0) (1/2)
18/02/08 15:22:21 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 1.0 (TID 2) in 1933 ms on 192.168.154.133 (executor 0) (2/2)
18/02/08 15:22:21 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 1.0, whose tasks have all completed, from pool
18/02/08 15:22:21 INFO scheduler.DAGScheduler: ResultStage 1 (saveAsTextFile at WordCount.scala:64) finished in 1.938 s
18/02/08 15:22:21 INFO scheduler.DAGScheduler: Job 0 finished: saveAsTextFile at WordCount.scala:64, took 22.116753 s
18/02/08 15:22:21 INFO server.ServerConnector: Stopped Spark@7f3e9c42{HTTP/1.1}{0.0.0.0:4040}
18/02/08 15:22:21 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@6ce238c7{/stages/stage/kill,null,UNAVAILABLE,@Spark}
18/02/08 15:22:21 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@64d92842{/jobs/job/kill,null,UNAVAILABLE,@Spark}
18/02/08 15:22:21 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@ca9e09c{/api,null,UNAVAILABLE,@Spark}
18/02/08 15:22:21 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@7eddb166{/,null,UNAVAILABLE,@Spark}
18/02/08 15:22:21 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@5f8c7713{/static,null,UNAVAILABLE,@Spark}
18/02/08 15:22:21 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@464ecd5c{/executors/threadDump/json,null,UNAVAILABLE,@Spark}
18/02/08 15:22:21 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@2db6f406{/executors/threadDump,null,UNAVAILABLE,@Spark}
18/02/08 15:22:21 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@158098e9{/executors/json,null,UNAVAILABLE,@Spark}
18/02/08 15:22:21 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@639a07f5{/executors,null,UNAVAILABLE,@Spark}
18/02/08 15:22:21 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@793a50f8{/environment/json,null,UNAVAILABLE,@Spark}
18/02/08 15:22:21 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@57b439bb{/environment,null,UNAVAILABLE,@Spark}
18/02/08 15:22:21 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@5e9ff595{/storage/rdd/json,null,UNAVAILABLE,@Spark}
18/02/08 15:22:21 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@7ed33e4f{/storage/rdd,null,UNAVAILABLE,@Spark}
18/02/08 15:22:21 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@66940115{/storage/json,null,UNAVAILABLE,@Spark}
18/02/08 15:22:21 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@4e4c1b4b{/storage,null,UNAVAILABLE,@Spark}
18/02/08 15:22:21 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@e8f000c{/stages/pool/json,null,UNAVAILABLE,@Spark}
18/02/08 15:22:21 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@3e9c6879{/stages/pool,null,UNAVAILABLE,@Spark}
18/02/08 15:22:21 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@6bbce5f1{/stages/stage/json,null,UNAVAILABLE,@Spark}
18/02/08 15:22:21 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@519c49fa{/stages/stage,null,UNAVAILABLE,@Spark}
18/02/08 15:22:21 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@10fb0b33{/stages/json,null,UNAVAILABLE,@Spark}
18/02/08 15:22:21 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@40be59d2{/stages,null,UNAVAILABLE,@Spark}
18/02/08 15:22:21 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@467746a2{/jobs/job/json,null,UNAVAILABLE,@Spark}
18/02/08 15:22:21 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@5f5ec388{/jobs/job,null,UNAVAILABLE,@Spark}
18/02/08 15:22:21 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@4bf57335{/jobs/json,null,UNAVAILABLE,@Spark}
18/02/08 15:22:21 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@7ff38263{/jobs,null,UNAVAILABLE,@Spark}
18/02/08 15:22:21 INFO ui.SparkUI: Stopped Spark web UI at http://192.168.154.134:4040
18/02/08 15:22:21 INFO cluster.StandaloneSchedulerBackend: Shutting down all executors
18/02/08 15:22:21 INFO cluster.CoarseGrainedSchedulerBackend$DriverEndpoint: Asking each executor to shut down
18/02/08 15:22:21 INFO spark.MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!
18/02/08 15:22:21 INFO memory.MemoryStore: MemoryStore cleared
18/02/08 15:22:21 INFO storage.BlockManager: BlockManager stopped
18/02/08 15:22:21 INFO storage.BlockManagerMaster: BlockManagerMaster stopped
18/02/08 15:22:21 INFO scheduler.OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!
18/02/08 15:22:21 INFO spark.SparkContext: Successfully stopped SparkContext
18/02/08 15:22:21 INFO util.ShutdownHookManager: Shutdown hook called
18/02/08 15:22:21 INFO util.ShutdownHookManager: Deleting directory /tmp/spark-b652f8de-76a7-467f-b64d-3e493dfb2195
xshell中运行后的界面效果
4.3、查看运行结果
[hadoop@master02 install]$ hdfs dfs -ls /test/scala/
Found 2 items
drwxr-xr-x - hadoop supergroup 0 2018-02-07 16:25 /test/scala/input
drwxr-xr-x - hadoop supergroup 0 2018-02-08 15:22 /test/scala/output
[hadoop@master02 install]$ hdfs dfs -ls /test/scala/output
Found 3 items
-rw-r--r-- 3 hadoop supergroup 0 2018-02-08 15:22 /test/scala/output/_SUCCESS
-rw-r--r-- 3 hadoop supergroup 134 2018-02-08 15:22 /test/scala/output/part-00000
-rw-r--r-- 3 hadoop supergroup 70 2018-02-08 15:22 /test/scala/output/part-00001
[hadoop@master02 install]$ hdfs dfs -cat /test/scala/output/part-00000
(scala,2)
(zuo,2)
(tian,4)
(shi,8)
(ce,4)
(zai,2)
(欢迎,4)
(wo,2)
(zhnag,2)
(san,2)
(welcome,2)
(yi,8)
(ge,8)
(hao,4)
(qi,2)
(yu,2)
[hadoop@master02 install]$ hdfs dfs -cat /test/scala/output/part-00001
(guan,2)
(jin,2)
(ren,2)
(de,2)
(le,2)
(to,2)
(zhe,2)
(li,2)
(mmzs,2)
[hadoop@master02 install]$
查看hdfs集群上的数据是否生成
5、说明:
对于将Job提交到集群的情况,最好不要直接在Eclipse工程中测试,这种不可预测性太大,容易出现异常,如果需要直接在Eclipse中测试可以设置一下提交的master节点:
//读取spark配置文件
val conf:SparkConf = new SparkConf();
//集群测试模式
//conf.setMaster("spark://master01:7077");
//设定应用名字
conf.setAppName("Hdfs Scala Spark RDD");
//根据配置获取spark上下文对象
val sc:SparkContext = new SparkContext(conf);
同时因为Job中涉及到HDFS的文件件操作,这需要连接到HDFS来完成,所以需要将Hadoop的配置文件拷贝到工程的根目录下
[hadoop@CloudDeskTop software]$ cd hadoop-2.7.3/etc/hadoop/
[hadoop@CloudDeskTop hadoop]$ cp -a core-site.xml hdfs-site.xml /project/scala/SparkTest/src/
完成上述的操作之后就可以在Eclipse中直接测试了,但是经过实践操作发现这种在IDE环境中提交Job到集群的测试会抛出很多异常(比如mutable.List类型转换异常等)
log4j:WARN No appenders could be found for logger (org.apache.hadoop.metrics2.lib.MutableMetricsFactory).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
18/02/08 13:23:13 INFO SparkContext: Running Spark version 2.1.1
18/02/08 13:23:13 WARN SparkContext: Support for Java 7 is deprecated as of Spark 2.0.0
18/02/08 13:23:13 INFO SecurityManager: Changing view acls to: hadoop
18/02/08 13:23:13 INFO SecurityManager: Changing modify acls to: hadoop
18/02/08 13:23:13 INFO SecurityManager: Changing view acls groups to:
18/02/08 13:23:13 INFO SecurityManager: Changing modify acls groups to:
18/02/08 13:23:13 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(hadoop); groups with view permissions: Set(); users with modify permissions: Set(hadoop); groups with modify permissions: Set()
18/02/08 13:23:14 INFO Utils: Successfully started service 'sparkDriver' on port 33230.
18/02/08 13:23:14 INFO SparkEnv: Registering MapOutputTracker
18/02/08 13:23:14 INFO SparkEnv: Registering BlockManagerMaster
18/02/08 13:23:14 INFO BlockManagerMasterEndpoint: Using org.apache.spark.storage.DefaultTopologyMapper for getting topology information
18/02/08 13:23:14 INFO BlockManagerMasterEndpoint: BlockManagerMasterEndpoint up
18/02/08 13:23:14 INFO DiskBlockManager: Created local directory at /tmp/blockmgr-7fe67308-7d14-407b-ab2e-a45de1072134
18/02/08 13:23:14 INFO MemoryStore: MemoryStore started with capacity 348.0 MB
18/02/08 13:23:14 INFO SparkEnv: Registering OutputCommitCoordinator
18/02/08 13:23:15 INFO Utils: Successfully started service 'SparkUI' on port 4040.
18/02/08 13:23:15 INFO SparkUI: Bound SparkUI to 0.0.0.0, and started at http://192.168.154.134:4040
18/02/08 13:23:15 INFO StandaloneAppClient$ClientEndpoint: Connecting to master spark://master01:7077...
18/02/08 13:23:15 INFO TransportClientFactory: Successfully created connection to master01/192.168.154.130:7077 after 55 ms (0 ms spent in bootstraps)
18/02/08 13:23:15 INFO StandaloneSchedulerBackend: Connected to Spark cluster with app ID app-20180208132316-0010
18/02/08 13:23:15 INFO StandaloneAppClient$ClientEndpoint: Executor added: app-20180208132316-0010/0 on worker-20180208121809-192.168.154.133-49922 (192.168.154.133:49922) with 4 cores
18/02/08 13:23:15 INFO StandaloneSchedulerBackend: Granted executor ID app-20180208132316-0010/0 on hostPort 192.168.154.133:49922 with 4 cores, 1024.0 MB RAM
18/02/08 13:23:15 INFO StandaloneAppClient$ClientEndpoint: Executor added: app-20180208132316-0010/1 on worker-20180208121818-192.168.154.132-43679 (192.168.154.132:43679) with 4 cores
18/02/08 13:23:15 INFO StandaloneSchedulerBackend: Granted executor ID app-20180208132316-0010/1 on hostPort 192.168.154.132:43679 with 4 cores, 1024.0 MB RAM
18/02/08 13:23:15 INFO StandaloneAppClient$ClientEndpoint: Executor added: app-20180208132316-0010/2 on worker-20180208121826-192.168.154.131-56071 (192.168.154.131:56071) with 4 cores
18/02/08 13:23:15 INFO StandaloneSchedulerBackend: Granted executor ID app-20180208132316-0010/2 on hostPort 192.168.154.131:56071 with 4 cores, 1024.0 MB RAM
18/02/08 13:23:15 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 49476.
18/02/08 13:23:15 INFO NettyBlockTransferService: Server created on 192.168.154.134:49476
18/02/08 13:23:15 INFO BlockManager: Using org.apache.spark.storage.RandomBlockReplicationPolicy for block replication policy
18/02/08 13:23:15 INFO StandaloneAppClient$ClientEndpoint: Executor updated: app-20180208132316-0010/1 is now RUNNING
18/02/08 13:23:15 INFO StandaloneAppClient$ClientEndpoint: Executor updated: app-20180208132316-0010/0 is now RUNNING
18/02/08 13:23:15 INFO BlockManagerMaster: Registering BlockManager BlockManagerId(driver, 192.168.154.134, 49476, None)
18/02/08 13:23:16 INFO StandaloneAppClient$ClientEndpoint: Executor updated: app-20180208132316-0010/2 is now RUNNING
18/02/08 13:23:16 INFO BlockManagerMasterEndpoint: Registering block manager 192.168.154.134:49476 with 348.0 MB RAM, BlockManagerId(driver, 192.168.154.134, 49476, None)
18/02/08 13:23:16 INFO BlockManagerMaster: Registered BlockManager BlockManagerId(driver, 192.168.154.134, 49476, None)
18/02/08 13:23:16 INFO BlockManager: Initialized BlockManager: BlockManagerId(driver, 192.168.154.134, 49476, None)
18/02/08 13:23:16 INFO StandaloneSchedulerBackend: SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.0
18/02/08 13:23:17 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 199.5 KB, free 347.8 MB)
18/02/08 13:23:18 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 23.5 KB, free 347.8 MB)
18/02/08 13:23:18 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on 192.168.154.134:49476 (size: 23.5 KB, free: 348.0 MB)
18/02/08 13:23:18 INFO SparkContext: Created broadcast 0 from textFile at WordCount.scala:46
18/02/08 13:23:19 INFO FileInputFormat: Total input paths to process : 2
18/02/08 13:23:20 INFO deprecation: mapred.tip.id is deprecated. Instead, use mapreduce.task.id
18/02/08 13:23:20 INFO deprecation: mapred.task.id is deprecated. Instead, use mapreduce.task.attempt.id
18/02/08 13:23:20 INFO deprecation: mapred.task.is.map is deprecated. Instead, use mapreduce.task.ismap
18/02/08 13:23:20 INFO deprecation: mapred.task.partition is deprecated. Instead, use mapreduce.task.partition
18/02/08 13:23:20 INFO deprecation: mapred.job.id is deprecated. Instead, use mapreduce.job.id
18/02/08 13:23:20 INFO FileOutputCommitter: File Output Committer Algorithm version is 1
18/02/08 13:23:21 INFO SparkContext: Starting job: saveAsTextFile at WordCount.scala:64
18/02/08 13:23:21 INFO DAGScheduler: Registering RDD 3 (map at WordCount.scala:50)
18/02/08 13:23:21 INFO DAGScheduler: Got job 0 (saveAsTextFile at WordCount.scala:64) with 2 output partitions
18/02/08 13:23:21 INFO DAGScheduler: Final stage: ResultStage 1 (saveAsTextFile at WordCount.scala:64)
18/02/08 13:23:21 INFO DAGScheduler: Parents of final stage: List(ShuffleMapStage 0)
18/02/08 13:23:21 INFO DAGScheduler: Missing parents: List(ShuffleMapStage 0)
18/02/08 13:23:21 INFO DAGScheduler: Submitting ShuffleMapStage 0 (MapPartitionsRDD[3] at map at WordCount.scala:50), which has no missing parents
18/02/08 13:23:21 INFO MemoryStore: Block broadcast_1 stored as values in memory (estimated size 4.4 KB, free 347.8 MB)
18/02/08 13:23:21 INFO MemoryStore: Block broadcast_1_piece0 stored as bytes in memory (estimated size 2.5 KB, free 347.8 MB)
18/02/08 13:23:21 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on 192.168.154.134:49476 (size: 2.5 KB, free: 348.0 MB)
18/02/08 13:23:21 INFO SparkContext: Created broadcast 1 from broadcast at DAGScheduler.scala:996
18/02/08 13:23:21 INFO DAGScheduler: Submitting 2 missing tasks from ShuffleMapStage 0 (MapPartitionsRDD[3] at map at WordCount.scala:50)
18/02/08 13:23:21 INFO TaskSchedulerImpl: Adding task set 0.0 with 2 tasks
18/02/08 13:23:33 INFO CoarseGrainedSchedulerBackend$DriverEndpoint: Registered executor NettyRpcEndpointRef(null) (192.168.154.131:58462) with ID 2
18/02/08 13:23:33 INFO TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, 192.168.154.131, executor 2, partition 0, ANY, 5987 bytes)
18/02/08 13:23:33 INFO TaskSetManager: Starting task 1.0 in stage 0.0 (TID 1, 192.168.154.131, executor 2, partition 1, ANY, 5989 bytes)
18/02/08 13:23:34 INFO BlockManagerMasterEndpoint: Registering block manager 192.168.154.131:39801 with 413.9 MB RAM, BlockManagerId(2, 192.168.154.131, 39801, None)
18/02/08 13:23:34 INFO CoarseGrainedSchedulerBackend$DriverEndpoint: Registered executor NettyRpcEndpointRef(null) (192.168.154.133:50331) with ID 0
18/02/08 13:23:35 INFO BlockManagerMasterEndpoint: Registering block manager 192.168.154.133:54974 with 413.9 MB RAM, BlockManagerId(0, 192.168.154.133, 54974, None)
18/02/08 13:23:36 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on 192.168.154.131:39801 (size: 2.5 KB, free: 413.9 MB)
18/02/08 13:23:36 INFO CoarseGrainedSchedulerBackend$DriverEndpoint: Registered executor NettyRpcEndpointRef(null) (192.168.154.132:39248) with ID 1
18/02/08 13:23:37 INFO BlockManagerMasterEndpoint: Registering block manager 192.168.154.132:51259 with 413.9 MB RAM, BlockManagerId(1, 192.168.154.132, 51259, None)
18/02/08 13:23:37 WARN TaskSetManager: Lost task 1.0 in stage 0.0 (TID 1, 192.168.154.131, executor 2): java.lang.ClassCastException: cannot assign instance of scala.collection.immutable.List$SerializationProxy to field org.apache.spark.rdd.RDD.org$apache$spark$rdd$RDD$$dependencies_ of type scala.collection.Seq in instance of org.apache.spark.rdd.MapPartitionsRDD
at java.io.ObjectStreamClass$FieldReflector.setObjFieldValues(ObjectStreamClass.java:2083)
at java.io.ObjectStreamClass.setObjFieldValues(ObjectStreamClass.java:1261)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1996)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1915)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1990)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1915)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
at java.io.ObjectInputStream.readObject(ObjectInputStream.java:370)
at org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:75)
at org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:114)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:85)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:322)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745) 18/02/08 13:23:37 INFO TaskSetManager: Starting task 1.1 in stage 0.0 (TID 2, 192.168.154.133, executor 0, partition 1, ANY, 5989 bytes)
18/02/08 13:23:37 INFO TaskSetManager: Lost task 0.0 in stage 0.0 (TID 0) on 192.168.154.131, executor 2: java.lang.ClassCastException (cannot assign instance of scala.collection.immutable.List$SerializationProxy to field org.apache.spark.rdd.RDD.org$apache$spark$rdd$RDD$$dependencies_ of type scala.collection.Seq in instance of org.apache.spark.rdd.MapPartitionsRDD) [duplicate 1]
18/02/08 13:23:37 INFO TaskSetManager: Starting task 0.1 in stage 0.0 (TID 3, 192.168.154.133, executor 0, partition 0, ANY, 5987 bytes)
18/02/08 13:23:38 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on 192.168.154.133:54974 (size: 2.5 KB, free: 413.9 MB)
18/02/08 13:23:38 INFO TaskSetManager: Lost task 0.1 in stage 0.0 (TID 3) on 192.168.154.133, executor 0: java.lang.ClassCastException (cannot assign instance of scala.collection.immutable.List$SerializationProxy to field org.apache.spark.rdd.RDD.org$apache$spark$rdd$RDD$$dependencies_ of type scala.collection.Seq in instance of org.apache.spark.rdd.MapPartitionsRDD) [duplicate 2]
18/02/08 13:23:38 INFO TaskSetManager: Starting task 0.2 in stage 0.0 (TID 4, 192.168.154.131, executor 2, partition 0, ANY, 5987 bytes)
18/02/08 13:23:38 INFO TaskSetManager: Lost task 1.1 in stage 0.0 (TID 2) on 192.168.154.133, executor 0: java.lang.ClassCastException (cannot assign instance of scala.collection.immutable.List$SerializationProxy to field org.apache.spark.rdd.RDD.org$apache$spark$rdd$RDD$$dependencies_ of type scala.collection.Seq in instance of org.apache.spark.rdd.MapPartitionsRDD) [duplicate 3]
18/02/08 13:23:38 INFO TaskSetManager: Starting task 1.2 in stage 0.0 (TID 5, 192.168.154.131, executor 2, partition 1, ANY, 5989 bytes)
18/02/08 13:23:38 INFO TaskSetManager: Lost task 0.2 in stage 0.0 (TID 4) on 192.168.154.131, executor 2: java.lang.ClassCastException (cannot assign instance of scala.collection.immutable.List$SerializationProxy to field org.apache.spark.rdd.RDD.org$apache$spark$rdd$RDD$$dependencies_ of type scala.collection.Seq in instance of org.apache.spark.rdd.MapPartitionsRDD) [duplicate 4]
18/02/08 13:23:38 INFO TaskSetManager: Starting task 0.3 in stage 0.0 (TID 6, 192.168.154.131, executor 2, partition 0, ANY, 5987 bytes)
18/02/08 13:23:38 INFO TaskSetManager: Lost task 1.2 in stage 0.0 (TID 5) on 192.168.154.131, executor 2: java.lang.ClassCastException (cannot assign instance of scala.collection.immutable.List$SerializationProxy to field org.apache.spark.rdd.RDD.org$apache$spark$rdd$RDD$$dependencies_ of type scala.collection.Seq in instance of org.apache.spark.rdd.MapPartitionsRDD) [duplicate 5]
18/02/08 13:23:38 INFO TaskSetManager: Starting task 1.3 in stage 0.0 (TID 7, 192.168.154.131, executor 2, partition 1, ANY, 5989 bytes)
18/02/08 13:23:38 INFO TaskSetManager: Lost task 0.3 in stage 0.0 (TID 6) on 192.168.154.131, executor 2: java.lang.ClassCastException (cannot assign instance of scala.collection.immutable.List$SerializationProxy to field org.apache.spark.rdd.RDD.org$apache$spark$rdd$RDD$$dependencies_ of type scala.collection.Seq in instance of org.apache.spark.rdd.MapPartitionsRDD) [duplicate 6]
18/02/08 13:23:38 ERROR TaskSetManager: Task 0 in stage 0.0 failed 4 times; aborting job
18/02/08 13:23:39 INFO TaskSchedulerImpl: Cancelling stage 0
18/02/08 13:23:39 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool
18/02/08 13:23:39 INFO TaskSchedulerImpl: Stage 0 was cancelled
18/02/08 13:23:39 INFO TaskSetManager: Lost task 1.3 in stage 0.0 (TID 7) on 192.168.154.131, executor 2: java.lang.ClassCastException (cannot assign instance of scala.collection.immutable.List$SerializationProxy to field org.apache.spark.rdd.RDD.org$apache$spark$rdd$RDD$$dependencies_ of type scala.collection.Seq in instance of org.apache.spark.rdd.MapPartitionsRDD) [duplicate 7]
18/02/08 13:23:39 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool
18/02/08 13:23:39 INFO DAGScheduler: ShuffleMapStage 0 (map at WordCount.scala:50) failed in 17.103 s due to Job aborted due to stage failure: Task 0 in stage 0.0 failed 4 times, most recent failure: Lost task 0.3 in stage 0.0 (TID 6, 192.168.154.131, executor 2): java.lang.ClassCastException: cannot assign instance of scala.collection.immutable.List$SerializationProxy to field org.apache.spark.rdd.RDD.org$apache$spark$rdd$RDD$$dependencies_ of type scala.collection.Seq in instance of org.apache.spark.rdd.MapPartitionsRDD
at java.io.ObjectStreamClass$FieldReflector.setObjFieldValues(ObjectStreamClass.java:2083)
at java.io.ObjectStreamClass.setObjFieldValues(ObjectStreamClass.java:1261)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1996)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1915)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1990)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1915)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
at java.io.ObjectInputStream.readObject(ObjectInputStream.java:370)
at org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:75)
at org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:114)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:85)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:322)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745) Driver stacktrace:
18/02/08 13:23:39 INFO DAGScheduler: Job 0 failed: saveAsTextFile at WordCount.scala:64, took 17.644346 s
Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 4 times, most recent failure: Lost task 0.3 in stage 0.0 (TID 6, 192.168.154.131, executor 2): java.lang.ClassCastException: cannot assign instance of scala.collection.immutable.List$SerializationProxy to field org.apache.spark.rdd.RDD.org$apache$spark$rdd$RDD$$dependencies_ of type scala.collection.Seq in instance of org.apache.spark.rdd.MapPartitionsRDD
at java.io.ObjectStreamClass$FieldReflector.setObjFieldValues(ObjectStreamClass.java:2083)
at java.io.ObjectStreamClass.setObjFieldValues(ObjectStreamClass.java:1261)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1996)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1915)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1990)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1915)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
at java.io.ObjectInputStream.readObject(ObjectInputStream.java:370)
at org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:75)
at org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:114)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:85)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:322)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745) Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1435)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1423)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1422)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1422)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1650)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1605)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1594)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1925)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1938)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1958)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopDataset$1.apply$mcV$sp(PairRDDFunctions.scala:1226)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopDataset$1.apply(PairRDDFunctions.scala:1168)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopDataset$1.apply(PairRDDFunctions.scala:1168)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.PairRDDFunctions.saveAsHadoopDataset(PairRDDFunctions.scala:1168)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopFile$4.apply$mcV$sp(PairRDDFunctions.scala:1071)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopFile$4.apply(PairRDDFunctions.scala:1037)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopFile$4.apply(PairRDDFunctions.scala:1037)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.PairRDDFunctions.saveAsHadoopFile(PairRDDFunctions.scala:1037)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopFile$1.apply$mcV$sp(PairRDDFunctions.scala:963)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopFile$1.apply(PairRDDFunctions.scala:963)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopFile$1.apply(PairRDDFunctions.scala:963)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.PairRDDFunctions.saveAsHadoopFile(PairRDDFunctions.scala:962)
at org.apache.spark.rdd.RDD$$anonfun$saveAsTextFile$1.apply$mcV$sp(RDD.scala:1489)
at org.apache.spark.rdd.RDD$$anonfun$saveAsTextFile$1.apply(RDD.scala:1468)
at org.apache.spark.rdd.RDD$$anonfun$saveAsTextFile$1.apply(RDD.scala:1468)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.RDD.saveAsTextFile(RDD.scala:1468)
at com.mmzs.bigdata.spark.rdd.cluster.WordCount$.main(WordCount.scala:64)
at com.mmzs.bigdata.spark.rdd.cluster.WordCount.main(WordCount.scala)
Caused by: java.lang.ClassCastException: cannot assign instance of scala.collection.immutable.List$SerializationProxy to field org.apache.spark.rdd.RDD.org$apache$spark$rdd$RDD$$dependencies_ of type scala.collection.Seq in instance of org.apache.spark.rdd.MapPartitionsRDD
at java.io.ObjectStreamClass$FieldReflector.setObjFieldValues(ObjectStreamClass.java:2083)
at java.io.ObjectStreamClass.setObjFieldValues(ObjectStreamClass.java:1261)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1996)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1915)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1990)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1915)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
at java.io.ObjectInputStream.readObject(ObjectInputStream.java:370)
at org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:75)
at org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:114)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:85)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:322)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)
18/02/08 13:23:39 INFO SparkContext: Invoking stop() from shutdown hook
18/02/08 13:23:39 INFO SparkUI: Stopped Spark web UI at http://192.168.154.134:4040
18/02/08 13:23:39 INFO StandaloneSchedulerBackend: Shutting down all executors
18/02/08 13:23:39 INFO CoarseGrainedSchedulerBackend$DriverEndpoint: Asking each executor to shut down
18/02/08 13:23:39 INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!
18/02/08 13:23:39 INFO MemoryStore: MemoryStore cleared
18/02/08 13:23:39 INFO BlockManager: BlockManager stopped
18/02/08 13:23:39 INFO BlockManagerMaster: BlockManagerMaster stopped
18/02/08 13:23:39 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!
18/02/08 13:23:39 INFO SparkContext: Successfully stopped SparkContext
18/02/08 13:23:39 INFO ShutdownHookManager: Shutdown hook called
18/02/08 13:23:39 INFO ShutdownHookManager: Deleting directory /tmp/spark-0c6925cb-bf3e-4616-94fb-a588da99dee4
博主运行时抛出的异常
spark之scala程序开发(集群运行模式):单词出现次数统计的更多相关文章
- 【Spark】SparkStreaming-提交到集群运行
SparkStreaming-提交到集群运行 spark streaming 提交_百度搜索 SparkStreaming示例在集群中运行 - CSDN博客
- 新闻实时分析系统 Spark2.X集群运行模式
1.几种运行模式介绍 Spark几种运行模式: 1)Local 2)Standalone 3)Yarn 4)Mesos 下载IDEA并安装,可以百度一下免费文档. 2.spark Standalone ...
- 新闻网大数据实时分析可视化系统项目——16、Spark2.X集群运行模式
1.几种运行模式介绍 Spark几种运行模式: 1)Local 2)Standalone 3)Yarn 4)Mesos 下载IDEA并安装,可以百度一下免费文档. 2.spark Standalone ...
- spark之scala程序开发(本地运行模式):单词出现次数统计
准备工作: 将运行Scala-Eclipse的机器节点(CloudDeskTop)内存调整至4G,因为需要在该节点上跑本地(local)Spark程序,本地Spark程序会启动Worker进程耗用大量 ...
- Spark运行模式_本地伪集群运行模式(单机模拟集群)
这种运行模式,和Local[N]很像,不同的是,它会在单机启动多个进程来模拟集群下的分布式场景,而不像Local[N]这种多个线程只能在一个进程下委屈求全的共享资源.通常也是用来验证开发出来的应用程序 ...
- spark集群运行模式
spark的集中运行模式 Local .Standalone.Yarn 关闭防火墙:systemctl stop firewalld.service 重启网络服务:systemctl restart ...
- Spark2.X集群运行模式
rn 启动 先把这三个文件的名字改一下 配置slaves 配置spark-env.sh export JAVA_HOME=/opt/modules/jdk1..0_60 export SCALA_HO ...
- 简单说明hadoop集群运行三种模式和配置文件
Hadoop的运行模式分为3种:本地运行模式,伪分布运行模式,集群运行模式,相应概念如下: 1.独立模式即本地运行模式(standalone或local mode)无需运行任何守护进程(daemon) ...
- hadoop本地运行与集群运行
开发环境: windows10+伪分布式(虚拟机组成的集群)+IDEA(不需要装插件) 介绍: 本地开发,本地debug,不需要启动集群,不需要在集群启动hdfs yarn 需要准备什么: 1/配置w ...
随机推荐
- python_flask 基础巩固 (URL传输传递方式)
URL传输传递@app.route('/'):@app.route('/list/')@app.route('/list/<int:id>/')@app.route('/list/< ...
- XML生成XAMl扩展
所有的WPF控件列为枚举 代码如: 1 public enum ControlType 2 { 3 Window_Resources, 4 Page_Resources, 5 Grid, 6 Stac ...
- parrot os 更新到3.7后无法上网(DNS暂时无法解析)
parrot os 更新到最新后可能ping的通IP,ping不通域名,是DNS解析出问题了 修改/etc/resolv.conf sudo rm /etc/resolv.conf sudo vi / ...
- python网络编程 双人多人聊天
在学习网路编程时,我们首先要考虑的是其中的逻辑,我们借助打电话的形式来了解网络编程的过程, 我们打电话时属于呼叫方,接电话的属于被呼叫方,那么被呼叫方一直保持在待机状态,等待主呼叫方 呼叫,只有在被呼 ...
- Shader_ShaderForge_NGUI_序列帧/
序列帧 Shader篇 Shader Forge序列帧算法! 附上Shader代码部分: // Shader created with Shader Forge v1.26 // Shader For ...
- 二叉树遍历之三(Moriis traversal)
二叉树的Morris traversal是个很值得学习的算法,也是此系列重点想要记叙的一个算法.Morris traversal的一个亮点在于它是O(1)空间复杂度的.前面的递归和迭代都是需要O(n ...
- Windows Server2012 搭建域错误“本地Administraor账户不需要密码”
标签:MSSQL/SQLServer/域控制器提升的先决条件验证失败/密码不符合要求 概述 在安装WindowsServer2012域控出现administrator账户密码不符合要求的错误,但是实际 ...
- CSS常见布局问题整理
实现div的水平居中和垂直居中 多元素水平居中 实现栅格化布局 1. 实现div的水平居中和垂直居中 实现效果: 这大概是最经典的一个题目了,所以放在第一个. 方法有好多, 一一列来 主要思路其实就是 ...
- {黑掉这个盒子} \\ FluxCapacitor Write-Up
源标题:{Hack the Box} \ FluxCapacitor Write-Up 标签(空格分隔): CTF 好孩子们.今天我们将学习耐心和情绪管理的优点.并且也许有一些关于绕过WEB应用防 ...
- 腾讯技术分享:GIF动图技术详解及手机QQ动态表情压缩技术实践
本文来自腾讯前端开发工程师“ wendygogogo”的技术分享,作者自评:“在Web前端摸爬滚打的码农一枚,对技术充满热情的菜鸟,致力为手Q的建设添砖加瓦.” 1.GIF格式的历史 GIF ( Gr ...