jTessBoxEditor依赖java虚拟机 , 所以要先安装 java.

jTessBoxEditor下载地址:

https://sourceforge.net/projects/vietocr/files/jTessBoxEditor/jTessBoxEditor-1.5.zip/download?use_mirror=nchc

解压后跳转到解压目录, 启动 jTessBoxEditor,命令行输入: 
java -Xms128m -Xmx1024m -jar jTessBoxEditor.jar

样本训练:

、准备样本图片
手动用画图工具写了一些数字(或者去刷网站的验证码) , 如果是彩色图片首先做灰度化处理以提高识别率 . 全部转换成tif文件, 可以用验证码结果命名方便比对.
、合并图片
打开jTessBoxEditor, 点击Tools > Merge Tiff, 选中所有准备好的tif文件,并把生成的tif文件放到一个新目录下, 命名为num.font.exp0.tif
注意: num是自定义的语言名称, font是自定义的字体名称.
问题: 我在使用jTessBoxEditor合并tif文件是报couldn't seek , 未找到原因, 后来改用TiffToy进行合并成功.
、生成box文件
tesseract num.font.exp0.tif num.font.exp0 [-l eng -psm 7] batch.nochop makebox
以上[]中的内容当返回Empty page的时候可以加上.其中 -psm 7 表示用单行文本识别,-l eng 表示使用英语语言.
、修改box文件
切换到jTessBoxEditor工具的Box Editor页,点击open,打开前面的tiff文件langyp.fontyp.exp0.tif,工具会自动加载对应的box文件。
逐个核对tif文件的box数据, 如果错误就进行修改, 全部检查结束后保存.
注意: box数据有翻页, 之前合并了多少tif文件就有多少页.
、生成font_properties
echo font >font_properties
【语法】:<fontname> <italic> <bold> <fixed> <serif> <fraktur>
fontname为字体名称,italic为斜体,bold为黑体字,fixed为默认字体,serif为衬线字体,fraktur德文黑字体,1和0代表有和无,精细区分时可使用。
、生成训练文件
tesseract num.font.exp0.tif num.font.exp0 nobatch box.train
、生成字符集文件
unicharset_extractor num.font.exp0.box
、生成shape文件
shapeclustering -F font_properties -U unicharset -O num.unicharset num.font.exp0.tr
、生成聚集字符特征文件
mftraining -F font_properties -U unicharset -O num.unicharset num.font.exp0.tr
、生成字符正常化特征文件
cntraining num.font.exp0.tr
、更名
rename normproto num.normproto
rename inttemp num.inttemp
rename pffmtable num.pffmtable
rename unicharset num.unicharset
rename shapetable num.shapetable
、合并训练文件,生成num.traineddata
combine_tessdata num.

以上是目录中的文件, 将生成的num.traineddata复制到Tesseract-OCR中的tessdata文件夹中即可.

最后进行一下测试:

tesseract test.png output -l num
#我们使用了指令[-l num]而不是[-l eng]。这说明,我们使用的是新生成的num语言的匹配库而不是默认的eng语言匹配库.

参考:

http://www.cnblogs.com/zhongtang/p/5555950.html

http://www.cnblogs.com/cnlian/p/5765871.html

http://vietocr.sourceforge.net/training.html

利用jTessBoxEditor工具进行Tesseract-OCR样本训练的更多相关文章

  1. 利用jTessBoxEditor工具进行Tesseract3.02.02样本训练,提高验证码识别率

    1.背景 前文已经简要介绍tesseract ocr引擎的安装及基本使用,其中提到使用-l eng参数来限定语言库,可以提高识别准确率及识别效率. 本文将针对某个网站的验证码进行样本训练,形成自己的语 ...

  2. jTessBoxEditor工具进行Tesseract3.02.02样本训练

    1.背景 前文已经简要介绍tesseract ocr引擎的安装及基本使用,其中提到使用-l eng参数来限定语言库,可以提高识别准确率及识别效率. 本文将针对某个网站的验证码进行样本训练,形成自己的语 ...

  3. tesseract ocr文字识别Android实例程序和训练工具全部源代码

    tesseract ocr是一个开源的文字识别引擎,Android系统中也可以使用.可以识别50多种语言,通过自己训练识别库的方式,可以大大提高识别的准确率. 为了节省大家的学习时间,现将自己近期的学 ...

  4. tesseract ocr训练 pt验证码

    识别率有问题A大概率识别为n,因此需要训练,这里讲一下 如何训练 参考 java代码里边直接使用tess4j,是对tesseract的封装,但是如果要训练,还是需要在进行安装tesseract-ocr ...

  5. Tesseract-OCR 字符识别---样本训练 [转]

    Tesseract是一个开源的OCR(Optical Character Recognition,光学字符识别)引擎,可以识别多种格式的图像文件并将其转换成文本,目前已支持60多种语言(包括中文).  ...

  6. Tesseract-OCR 字符识别---样本训练

    Tesseract是一个开源的OCR(Optical Character Recognition,光学字符识别)引擎,可以识别多种格式的图像文件并将其转换成文本,目前已支持60多种语言(包括中文).  ...

  7. 转 Tesseract-OCR 字符识别---样本训练

    转自:http://blog.csdn.net/feihu521a/article/details/8433077 Tesseract是一个开源的OCR(Optical Character Recog ...

  8. 开源图片文字识别引擎——Tesseract OCR

    Tessseract为一款开源.免费的OCR引擎,能够支持中文十分难得.虽然其识别效果不是很理想,但是对于要求不高的中小型项目来说,已经足够用了. 文字识别可应用于许多领域,如阅读.翻译.文献资料的检 ...

  9. Python3.x:pytesseract识别率提高(样本训练)

    Python3.x:pytesseract识别率提高(样本训练) 1,下载并安装3.05版本的tesseract 地址:https://sourceforge.net/projects/tessera ...

随机推荐

  1. rest_framework学习之路

    目录 RESTful理解 APIView 序列化组件 视图组件 解析器 认证组件 权限组件 频率组件 分页器 响应器 URL控制器 版本控制器

  2. HDU - 3974 Assign the task (线段树区间修改+构建模型)

    https://cn.vjudge.net/problem/HDU-3974 题意 有一棵树,给一个结点分配任务时,其子树的所有结点都能接受到此任务.有两个操作,C x表示查询x结点此时任务编号,T ...

  3. Spark源码剖析 - SparkContext的初始化(二)_创建执行环境SparkEnv

    2. 创建执行环境SparkEnv SparkEnv是Spark的执行环境对象,其中包括众多与Executor执行相关的对象.由于在local模式下Driver会创建Executor,local-cl ...

  4. [Android] Android 常见第三方库汇总地址

    Android 常见第三方库汇总地址 https://github.com/wasabeef/awesome-android-libraries List of Android Libraries T ...

  5. python生成pdf

    代码 需要先安装wkhtmltopdf,下载路径https://github.com/wkhtmltopdf/wkhtmltopdf/releases/download/0.12.5/wkhtmlto ...

  6. C#中属性的使用——主动调用才发挥作用

    微软对属性定义如下: “属性是这样的成员:它提供灵活的机制来读取.编写或计算某个私有字段的值. 可以像使用公共数据成员一样使用属性,但实际上它们是称作“访问器”的特殊方法. 这使得可以轻松访问数据,此 ...

  7. Noisy Channel模型纠正单词拼写错误

    本文介绍 Stanford<From Languages to Information>课程中讲到的 单词拼写错误 纠正.背后的数学原理主要是贝叶斯公式.单词拼写错误纠正主要涉及到两个模型 ...

  8. github下载更新代码到本地

    git remote -v git fetch origin master git log -p  master.. origin/master 如果本地已修改需要 git stash git mer ...

  9. MobX响应式编程库

    MobX https://mobx.js.org/ https://github.com/mobxjs/mobx MobX is a battle tested library that makes ...

  10. 二、linux IO 编程---系统调用和POSIX标准和标准IO

    2.1 系统调用 2.1.1 概念 所谓系统调用(system call)是指曹错系统提供给用户程序的一组“特殊”接口,用户程序可以通过这组“特殊”接口来获得操作系统内核提供的特殊服务. 应用程序可以 ...