【Spark调优】聚合操作数据倾斜解决方案
【使用场景】
对RDD执行reduceByKey等聚合类shuffle算子或者在Spark SQL中使用group by语句进行分组聚合时,经过sample或日志、界面定位,发生了数据倾斜。
【解决方案】
局部聚合+全局聚合,进行两阶段聚合。具体为:
将原本相同的key通过附加随机前缀的方式,变成多个不同的key,就可以让原本被一个task处理的数据分散到多个task上去做局部聚合,进而解决单个task处理数据量过多的问题。接着去除掉随机前缀,再次进行全局聚合,就可以得到最终的结果。
- 第一步:给key倾斜的dataSkewRDD中每个key都打上一个随机前缀。
例如10以内的随机数,此时原先一样的key,包括集中倾斜的key就变成不一样的了,比如(hello, 1) (hello, 1) (hello, 1) (hello, 1),就会变成(5_hello, 1) (3_hello, 1) (3_hello, 1) (5_hello, 1) (8_hello, 1) (5_hello, 1) ...
- 第二步:对打上随机前缀的key不再倾斜的randomPrefixRdd进行局部聚合。
接着对打上随机数后的数据,执行reduceByKey等聚合操作,进行局部聚合时,就不会数据倾斜了。此时,第一步局部聚合的结果,变成了(5_hello, 3) (3_hello, 2) (8_hello, 1)
- 第三步:局部聚合后,去除localAggRdd中每个key的随机前缀。
此时,第二步局部聚合的结果,变成了(hello, 3) (hello, 2) (hello, 1)
- 第四步:对去除了随机前缀的removeRandomPrefixRdd进行全局聚合。
得到最终结果(hello, 6)
【方案优点】
对于聚合类的shuffle操作导致的数据倾斜,效果不错,通常都可以解决数据倾斜问题,至少大幅缓解数据倾斜,将Spark作业的性能提升数倍以上。
【代码实现】
代码实现:https://github.com/wwcom614/Spark
【Spark调优】聚合操作数据倾斜解决方案的更多相关文章
- 【Spark调优】数据倾斜及排查
[数据倾斜及调优概述] 大数据分布式计算中一个常见的棘手问题——数据倾斜: 在进行shuffle的时候,必须将各个节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或j ...
- spark调优篇-数据倾斜(汇总)
数据倾斜 为什么会数据倾斜 spark 中的数据倾斜并不是说原始数据存在倾斜,原始数据都是一个一个的 block,大小都一样,不存在数据倾斜: 而是指 shuffle 过程中产生的数据倾斜,由于不同的 ...
- Spark 调优之数据倾斜
什么是数据倾斜? Spark 的计算抽象如下 数据倾斜指的是:并行处理的数据集中,某一部分(如 Spark 或 Kafka 的一个 Partition)的数据显著多于其它部分,从而使得该部分的处理速度 ...
- 【Spark调优】小表join大表数据倾斜解决方案
[使用场景] 对RDD使用join类操作,或者是在Spark SQL中使用join语句时,而且join操作中的一个RDD或表的数据量比较小(例如几百MB或者1~2GB),比较适用此方案. [解决方案] ...
- 【Spark调优】Broadcast广播变量
[业务场景] 在Spark的统计开发过程中,肯定会遇到类似小维表join大业务表的场景,或者需要在算子函数中使用外部变量的场景(尤其是大变量,比如100M以上的大集合),那么此时应该使用Spark的广 ...
- 【Spark调优】大表join大表,少数key导致数据倾斜解决方案
[使用场景] 两个RDD进行join的时候,如果数据量都比较大,那么此时可以sample看下两个RDD中的key分布情况.如果出现数据倾斜,是因为其中某一个RDD中的少数几个key的数据量过大,而另一 ...
- Spark调优指南
Spark相关问题 Spark比MR快的原因? 1) Spark的计算结果可以放入内存,支持基于内存的迭代,MR不支持. 2) Spark有DAG有向无环图,可以实现pipeline的计算模式. 3) ...
- spark 调优概述
分为几个部分: 开发调优.资源调优.数据倾斜调优.shuffle调优 开发调优: 主要包括这几个方面 RDD lineage设计.算子的合理使用.特殊操作的优化等 避免创建重复的RDD,尽可能复用同一 ...
- Spark调优秘诀——超详细
版权声明:本文为博主原创文章,转载请注明出处. Spark调优秘诀 1.诊断内存的消耗 在Spark应用程序中,内存都消耗在哪了? 1.每个Java对象都有一个包含该对象元数据的对象头,其大小是16个 ...
随机推荐
- Kafka 性能测试报告
Producer command: kafka-producer-perf-test --topic _perf-test --num-records 10000000 --record-size 1 ...
- 设计模式学习心得<享元模式 Flyweight>
享元模式(Flyweight Pattern)主要用于减少创建对象的数量,以减少内存占用和提高性能.这种类型的设计模式属于结构型模式,它提供了减少对象数量从而改善应用所需的对象结构的方式. 享元模式尝 ...
- zz-人生感悟
1. 社交感想 首先来看一下聪明人和普通人的区别是什么? 普通人思考问题都是一步一步的来,由A推理出B,B推导到C,再推导出D,最后得出E,然而聪明人却可以由A直接推算到E. 这就像开车,普通人的是手 ...
- APP优化(转载)
- [转] Shader Blending
引用:1.Unity3D shader Blending2.[风宇冲]Unity3D教程宝典之Shader篇:第十三讲 Alpha混合 混合(Blending)是计算机呈现渲染结果的最后阶段,每一个像 ...
- 在java中,事务是什么?
一.什么是Java事务通常的观念认为,事务仅与数据库相关.事务必须服从ISO/IEC所制定的ACID原则.ACID是原子性(atomicity).一致性(consistency).隔离性(isolat ...
- Jquery动态添加/删除表格行和列
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- 排序算法 (sorting algorithm)之 冒泡排序(bubble sort)
http://www.algolist.net/Algorithms/ https://docs.oracle.com/javase/tutorial/collections/algorithms/ ...
- RSA 前段加密 java 后台解密 已调试通过
本人整理网上的.好多网上的调不通.在这里把调试好的贴出来. 1. 异步获取公钥(后台获取):你也可以将公钥串写在页面上: var publicKey = null; $.ajax({ url: c ...
- linux vi如何保存编辑的文件
按ESC键回到命令模式,输入:w保存即可,或者输入:wq!保存文件并退出. 以下是保存命令: :w 保存文件但不退出vi . :w file 将修改另外保存到file中,不退出vi . :w! ...