【BZOJ5471】[FJOI2018]邮递员问题(动态规划)
【BZOJ5471】[FJOI2018]邮递员问题(动态规划)
题面
给定平面上若干个点,保证这些点在两条平行线上,给定起点终点,求从起点出发,遍历所有点后到达终点的最短路径长度。
题解
不会做,于是点开LOJ,点开除了\(std\)之外唯一过的人的代码,照着打了一遍QwQ......
然后再对着代码YY一遍就有了这篇东西。。。。。。
强制令起点的位置是第\(0\)行(方便而已)。
在第\(0\)行枚举一个\(i\),在第一行枚举一个\(j\)。
设\(f[j][0]\)表示第\(1\)行\([j+1,n_1]\)这些点已经走完,第\(0\)行\([i,n_0]\)已经走完,然后到达终点的最短路。
设\(f[j][1]\)表示第\(1\)行\([j,n_1]\)已经走完,第\(0\)行\([i+1,n_0]\)已经走完,然后达到终点的最短路。
把\(i\)按照从前往后或者从后往前的顺序枚举,到达起点就直接更新答案。
因为从起点出发可以向两个方向走,所以前后都要做一遍\(dp\)。
转移的话就是一堆讨论。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define MAX 10100
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n[2],ty[2],pos[2];
double h,tx[2],x[2][MAX],f[MAX][2];
double Dis(int i,int j)
{
double d=fabs(x[0][i]-x[1][j]);
return sqrt(d*d+h*h);
}
double ToEnd(int i,int j)
{
double d=fabs(x[i][j]-tx[1]);
return i==ty[1]?d:sqrt(h*h+d*d);
}
double Calc()
{
double ret=1e18;
sort(&x[0][1],&x[0][n[0]+1]);
sort(&x[1][1],&x[1][n[1]+1]);
for(int i=n[0];i;--i)
{
if(i==n[0])
for(int j=n[1];j;--j)
{
f[j][0]=j==n[1]?ToEnd(0,n[0]):min(f[j+1][1]+Dis(n[0],j+1),Dis(n[0],n[1])+x[1][n[1]]-x[1][j+1]+ToEnd(1,j+1));
f[j][1]=j==n[1]?ToEnd(1,n[1]):f[j+1][1]+x[1][j+1]-x[1][j];
}
else
for(int j=n[1];j;--j)
if(j==n[1])
{
f[j][1]=min(f[j][0]+Dis(i+1,j),Dis(n[0],n[1])+x[0][n[0]]-x[0][i+1]+ToEnd(0,i+1));
f[j][0]+=x[0][i+1]-x[0][i];
}
else
{
f[j][1]=min(f[j][0]+Dis(i+1,j),f[j+1][1]+x[1][j+1]-x[1][j]);
f[j][0]=min(f[j][0]+x[0][i+1]-x[0][i],f[j+1][1]+Dis(i,j+1));
}
ret=min(ret,x[0][i]-x[0][1]+tx[0]-x[0][1]+Dis(i,1)+f[1][1]);
ret=min(ret,fabs(x[0][i]-tx[0])+x[0][i]-x[0][1]+Dis(1,1)+f[1][1]);
if(x[0][i]<=tx[0])
{
ret=min(ret,tx[0]-x[0][1]+Dis(1,1)+f[1][1]);
break;
}
}
return ret;
}
int main()
{
scanf("%d%d%d%d%d%d%lf",&n[0],&n[1],&ty[0],&pos[0],&ty[1],&pos[1],&h);
int r=0;if(ty[0])r=1,swap(n[0],n[1]),ty[0]^=1,ty[1]^=1;
for(int t=0;t<=1;++t)
for(int i=1;i<=n[t^r];++i)
scanf("%lf",&x[t^r][i]);
tx[0]=x[ty[0]][pos[0]];
tx[1]=x[ty[1]][pos[1]];
double ans=Calc();
for(int t=0;t<=1;++t)
for(int i=1;i<=n[t];++i)
x[t][i]=20000-x[t][i];
tx[0]=20000-tx[0];tx[1]=20000-tx[1];
ans=min(ans,Calc());
printf("%.2lf\n",ans);
return 0;
}
【BZOJ5471】[FJOI2018]邮递员问题(动态规划)的更多相关文章
- LOJ2522:[FJOI2018]邮递员问题(乱搞)
传送门 乱搞. 可以发现如果起点在左边界,终点在右边界的时候上下走的点一定是连续的(可能吧) 那么可以设 \(f_{i,j,0/1}\) 表示当前上面到 \(i\),下面到 \(j\),当前在上面/下 ...
- yyb省选前的一些计划
突然意识到有一些题目的计划,才可以减少大量查水表或者找题目的时间. 所以我决定这样子处理. 按照这个链接慢慢做. 当然不可能只做省选题了. 需要适时候夹杂一些其他的题目. 比如\(agc/arc/cf ...
- 【BZOJ5469】[FJOI2018]领导集团问题(动态规划,线段树合并)
[BZOJ5469][FJOI2018]领导集团问题(动态规划,线段树合并) 题面 BZOJ 洛谷 题解 题目就是让你在树上找一个最大的点集,使得两个点如果存在祖先关系,那么就要满足祖先的权值要小于等 ...
- 增强学习(三)----- MDP的动态规划解法
上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...
- 简单动态规划-LeetCode198
题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...
- 动态规划 Dynamic Programming
March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...
- 动态规划之最长公共子序列(LCS)
转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...
- C#动态规划查找两个字符串最大子串
//动态规划查找两个字符串最大子串 public static string lcs(string word1, string word2) { ...
- C#递归、动态规划计算斐波那契数列
//递归 public static long recurFib(int num) { if (num < 2) ...
随机推荐
- scrapy之多环境的选择使用
scrapy之多环境的选择使用 个人主机主机上可能存在多个python环境,当在终端中使用scrapy时,容易产生错误,无法使用到自己想使用的那个python,如何解决这个问题呢? 出现这类问题时,直 ...
- shell脚本--操作MySQL数据库
其实就是一个很简单的套路,和其他语言差不多,首先连接数据库,然后在进行其他操作. 套路如下: #!/bin/bash mysql="mysql -uroot -proot" #连接 ...
- Visual Studio 2010 Shortcuts
Uploaded by ProNotion, updated on 11/28/2013 by jmb Platform: Windows/ English PDF Print Hide ...
- react购物车demo
import React, { Component } from 'react'; import './App.css'; import {connect} from 'react-redux'; i ...
- Git本地仓库push至GitHub远程仓库每次输入账户密码问题解决(亲测可行)
在使用git push命令将本地仓库内容推送至GitHub远程仓库的每一次git都要让我们输入GitHub的用户名和密码.这着实让我们心烦.我们会有疑问,我明明设置了公钥呀!怎么还需要输入账户和密码? ...
- Docker安装部署redis
借鉴博客:https://my.oschina.net/u/3489495/blog/1825335 待续... >>>>>>>>>docker安 ...
- Django--CRM--菜单排序等
一 . 菜单排序 1.我们想把菜单排序.首先给菜单加上权重,权重大的排在上面, 这就要在菜单表上加上一个权重字段. 2. 我们在菜单表里面把权重改一下 3. 需要把权重字段的信息拿出来放到sessio ...
- Scrapy网络爬虫框架的开发使用
1.安装 2.使用scrapy startproject project_name 命令创建scrapy项目 如图: 3.根据提示使用scrapy genspider spider_name dom ...
- git 提交顺序
0. git branch # 查看自己是哪个分支:先确定自己现在是哪个分支 1. git fetch # 将远程主机的更新,全部取回本地.如果只想取回特定分支的更新,可以指定分支名:git ...
- DELPHI中MDI子窗口的关闭和打开
DELPHI中MDI子窗口的关闭 和打开 Delphi中MDI子窗口的关闭方式默认为缩小而不是关闭,所以当你单击子窗口右上角的关闭按钮时会 发觉该子窗口只是最小化,而不是你预期的那样被 ...