【BZOJ3157/3516】国王奇遇记(数论)

题面

BZOJ3157

BZOJ3516

题解

先考虑怎么做\(m\le 100\)的情况、

令\(f(n,k)=\displaystyle \sum_{i=1}^n i^k m^i\),然后推式子:

\[\begin{aligned}
f(n+1,k)&=\sum_{i=1}^{n+1} i^km^i=m+\sum_{i=2}^{n+1}i^km^i\\
&=m+\sum_{i=1}^n (i+1)^km^{i+1}\\
&=m+m\sum_{i=1}^n m^i\sum_{j=0}^k{k\choose j}i^j\\
&=m+m\sum_{j=0}^{k}{k\choose j}\sum_{i=1}^n i^jm^i\\
&=m+m\sum_{j=0}^k {k\choose j}f(n,j)
\end{aligned}\]

这样子可以做到\(O(nm)\)。

考虑继续处理这个式子:

\[\begin{aligned}
f(2n,k)&=\sum_{i=1}^{2n}i^km^i=f(n,k)+m^n\sum_{i=1}^n (i+n)^km^i\\
&=f(n,k)+m^n\sum_{i=1}^n m^i\sum_{j=0}^k {k\choose j}i^jn^{k-j}\\
&=f(n,k)+m^n\sum_{j=0}^k{k\choose j}n^{k-j}\sum_{i=1}^ni^j m^i\\
&=f(n,k)+m^n\sum_{j=0}^k{k\choose j}n^{k-j}f(n,j)
\end{aligned}\]

既然这样子就可以愉快的倍增了。

时间复杂度\(O(m^2\log n)\)

#include<iostream>
using namespace std;
#define MOD 1000000007
int n,m,f[222],C[222][222],pw[222],tmp[222];
int fpow(int a,int b){int s=1;while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}return s;}
void Solve(int n)
{
if(n==1){for(int i=0;i<=m;++i)f[i]=m;return;}
Solve(n>>1);int pwm=fpow(m,n>>1);
pw[0]=1;for(int i=1;i<=m;++i)pw[i]=1ll*pw[i-1]*(n>>1)%MOD;
for(int i=0;i<=m;++i)tmp[i]=f[i];
for(int k=0;k<=m;++k)
for(int j=0;j<=k;++j)
tmp[k]=(tmp[k]+1ll*pwm*C[k][j]%MOD*pw[k-j]%MOD*f[j])%MOD;
for(int i=0;i<=m;++i)f[i]=tmp[i];
if(n&1)
{
for(int i=0;i<=m;++i)tmp[i]=m;
for(int k=0;k<=m;++k)
for(int j=0;j<=k;++j)
tmp[k]=(tmp[k]+1ll*m*C[k][j]%MOD*f[j])%MOD;
for(int i=0;i<=m;++i)f[i]=tmp[i];
}
}
int main()
{
cin>>n>>m;
for(int i=0;i<=m;++i)C[i][0]=1;
for(int i=1;i<=m;++i)
for(int j=1;j<=i;++j)
C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
Solve(n);
cout<<f[m]<<endl;
return 0;
}

然而如果你直接把上面的代码去交加强版就会\(T\)飞(时限\(1s\))

考虑更加优秀的方法。

直接令\(f(k)=\sum_{i=1}^n i^k m^i\)。

然后拿出来强行做个差:

\[\begin{aligned}
mf(k)-f(k)&=\sum_{i=1}^n i^k m^{i+1}-\sum_{i=1}^n i^km^i\\
&=n^km^{n+1}+\sum_{i=1}^{n} (i-1)^km^i-\sum_{i=1}^n i^k m^i\\
&=n^km^{n+1}+\sum_{i=1}^{n}m^i((i-1)^k-i^k)\\
&=n^km^{n+1}+\sum_{i=1}^n m^i \sum_{j=0}^{k-1}{k\choose j}(-1)^{k-j}i^j\\
&=n^km^{n+1}+\sum_{j=0}^{k-1}{k\choose j}(-1)^{k-j}\sum_{i=1}^n i^jm^i\\
&=n^km^{n+1}+\sum_{j=0}^{k-1}{k\choose j}(-1)^{k-j}f(j)\\
\end{aligned}\]

于是就可以做到\(O(m^2)\)了。

注意\(m=1\)的时候需要特判。

#include<iostream>
using namespace std;
#define MOD 1000000007
int n,m,f[1010],C[1010][1010],pw[1010],tmp[1010];
int fpow(int a,int b){int s=1;while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}return s;}
int main()
{
cin>>n>>m;
if(m==1){cout<<1ll*n*(n+1)/2%MOD<<endl;return 0;}
int inv=fpow(m-1,MOD-2);
for(int i=0;i<=m;++i)C[i][0]=1;
for(int i=1;i<=m;++i)
for(int j=1;j<=i;++j)
C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
f[0]=1ll*(fpow(m,n)+MOD-1)*inv%MOD*m%MOD;
for(int k=1,pwm=fpow(m,n+1),pw=n;k<=m;++k,pw=1ll*pw*n%MOD)
{
f[k]=1ll*pw*pwm%MOD;
for(int j=0,d=((k&1)?(MOD-1):1);j<k;++j,d=MOD-d)
f[k]=(f[k]+1ll*C[k][j]*d%MOD*f[j])%MOD;
f[k]=1ll*f[k]*inv%MOD;
}
cout<<f[m]<<endl;
return 0;
}

似乎还要一个更强的版本,然而我不会做QwQ。

【BZOJ3157/3516】国王奇遇记(数论)的更多相关文章

  1. bzoj3157 3516 国王奇遇记

    Description Input 共一行包括两个正整数N和M. Output 共一行为所求表达式的值对10^9+7取模的值. 特判m=1 m≠1时: 设S[u]=sigma(i^u*m^i) m*S ...

  2. BZOJ3157: 国王奇遇记 & 3516: 国王奇遇记加强版

    令\[S_i=\sum_{k=1}^n k^i m^k\]我们有\[\begin{eqnarray*}(m-1)S_i & = & mS_i - S_i \\& = & ...

  3. bzoj 3157 && bzoj 3516 国王奇遇记——推式子

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3157 https://www.lydsy.com/JudgeOnline/problem.p ...

  4. bzoj 3157 & bzoj 3516 国王奇遇记 —— 推式子

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3157 https://www.lydsy.com/JudgeOnline/problem.p ...

  5. BZOJ3157/BZOJ3516 国王奇遇记(矩阵快速幂/数学)

    由二项式定理,(m+1)k=ΣC(k,i)*mi.由此可以构造矩阵转移,将mi*ik全部塞进去即可,系数即为组合数*m.复杂度O(m3logn),因为大常数喜闻乐见的T掉了. #include< ...

  6. 3157: 国王奇遇记 & 3516: 国王奇遇记加强版 - BZOJ

    果然我数学不行啊,题解君: http://www.cnblogs.com/zhuohan123/p/3726933.html const h=; var fac,facinv,powm,s:..]of ...

  7. 【BZOJ4126】【BZOJ3516】【BZOJ3157】国王奇遇记 线性插值

    题目描述 三倍经验题. 给你\(n,m\),求 \[ \sum_{i=1}^ni^mm^i \] \(n\leq {10}^9,1\leq m\leq 500000\) 题解 当\(m=1\)时\(a ...

  8. BZOJ 3516 国王奇遇记加强版(乱推)

    题意 求\(\sum_{k=1}^{n}k^mm^k (n\leq1e9,m\leq1e3)\) 思路 在<>中有一个方法用来求和,称为摄动法. 我们考虑用摄动法来求这个和式,看能不能得到 ...

  9. 【BZOJ】【3157】&【BZOJ】【3516】国王奇遇记

    数论 题解:http://www.cnblogs.com/zhuohan123/p/3726933.html copy一下推导过程: 令$$S_i=\sum_{k=1}^{n}k^im^k$$ 我们有 ...

随机推荐

  1. 未能加载文件或程序集&quot;Newtonsoft.Json, Version=4.5.0.0

    这问题遇到好几次了,重新更改了引用都不好使,有的时候版本改成一致就好了,但是有的地方你不知道在哪里用了就不好排查,所性在config里面加个配置让程序运行的时候去处理得了~ 很实用,放在configu ...

  2. 实分析p78 两个解释

    1. 是为了存在一个充分大的J,使得,当j大于J.会满足.x是满足能一致收敛到f(x)自变量取得集合,, 是为了允许有限个 前面的不成立,是对所有的k都成立,让k取很大,可以很小 2.是函数列收敛到f ...

  3. HTTL之初印象

    概述 HTTL (Hyper-Text Template Language) 是一个高性能的开源JAVA模板引擎, 适用于动态HTML页面输出, 可替代JSP页面, 指令和Velocity相似. 简洁 ...

  4. linux 安装ssh以及ssh用法与免密登录

    想要免费登录就是把本地机器的id_rsa_pub的内容放到远程服务器的authorized_keys里面 一.配置yum和hosts文件 配置hosts文件: 命令:vi /etc/hosts 在文件 ...

  5. Eclipse中修改jsp、html……的编码格式

    一般如果使用的是Eclipse的默认编码格式,在我们保存的时候会提示选择保存的编码格式,保存后英文没有问题,但是中文就会乱码. 修改方式是: Windows——>Preferences——> ...

  6. MySQL简介及安装

    一.DBA工作内容及课程体系 二.MySQL课程体系介绍 三.DBA的职业素养 四.MySQL简介及安装 01 什么是数据? 02 什么是数据库管理系统 03 数据库管理系统种类 04 MySQL发展 ...

  7. python爬虫之git的使用

    一.简单认识: 1.初始化文件夹为版本控制文件夹,首先建立一个文件夹,进入这个文件夹以后输入git init初始化这个文件夹. 2.Git几种位置概念 1.本地代码:本地更改完代码以后,虽然是存放在g ...

  8. EXAMPLE FOR PEEWEE 多姿势使用 PEEWEE

    使用 PEEWEE 断断续续的差不多已经三个年头了,但是没有像这次使用这么多的特性和功能,所以这次一并记录一下,需要注意的地方和一些使用细节,之后使用起来可能会更方便. 因为是使用的 SQLAched ...

  9. mysql常用运算符

    一.算数运算符 + 加法 - 减法 * 乘法 / 除法 % 返回余数 二.比较运算符 = 等于 <>或!= 不等于 <=> 等于(这里是安全的等于 例如: select nul ...

  10. 原子变量与CAS算法(二)

    一.锁机制存在的问题 (1)在多线程竞争下,加锁.释放锁会导致比较多的上下文切换和调度延时,引起性能问题. (2)一个线程持有锁会导致其它所有需要此锁的线程挂起. (3)如果一个优先级高的线程等待一个 ...