【BZOJ3157/3516】国王奇遇记(数论)
【BZOJ3157/3516】国王奇遇记(数论)
题面
题解
先考虑怎么做\(m\le 100\)的情况、
令\(f(n,k)=\displaystyle \sum_{i=1}^n i^k m^i\),然后推式子:
f(n+1,k)&=\sum_{i=1}^{n+1} i^km^i=m+\sum_{i=2}^{n+1}i^km^i\\
&=m+\sum_{i=1}^n (i+1)^km^{i+1}\\
&=m+m\sum_{i=1}^n m^i\sum_{j=0}^k{k\choose j}i^j\\
&=m+m\sum_{j=0}^{k}{k\choose j}\sum_{i=1}^n i^jm^i\\
&=m+m\sum_{j=0}^k {k\choose j}f(n,j)
\end{aligned}\]
这样子可以做到\(O(nm)\)。
考虑继续处理这个式子:
f(2n,k)&=\sum_{i=1}^{2n}i^km^i=f(n,k)+m^n\sum_{i=1}^n (i+n)^km^i\\
&=f(n,k)+m^n\sum_{i=1}^n m^i\sum_{j=0}^k {k\choose j}i^jn^{k-j}\\
&=f(n,k)+m^n\sum_{j=0}^k{k\choose j}n^{k-j}\sum_{i=1}^ni^j m^i\\
&=f(n,k)+m^n\sum_{j=0}^k{k\choose j}n^{k-j}f(n,j)
\end{aligned}\]
既然这样子就可以愉快的倍增了。
时间复杂度\(O(m^2\log n)\)
#include<iostream>
using namespace std;
#define MOD 1000000007
int n,m,f[222],C[222][222],pw[222],tmp[222];
int fpow(int a,int b){int s=1;while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}return s;}
void Solve(int n)
{
if(n==1){for(int i=0;i<=m;++i)f[i]=m;return;}
Solve(n>>1);int pwm=fpow(m,n>>1);
pw[0]=1;for(int i=1;i<=m;++i)pw[i]=1ll*pw[i-1]*(n>>1)%MOD;
for(int i=0;i<=m;++i)tmp[i]=f[i];
for(int k=0;k<=m;++k)
for(int j=0;j<=k;++j)
tmp[k]=(tmp[k]+1ll*pwm*C[k][j]%MOD*pw[k-j]%MOD*f[j])%MOD;
for(int i=0;i<=m;++i)f[i]=tmp[i];
if(n&1)
{
for(int i=0;i<=m;++i)tmp[i]=m;
for(int k=0;k<=m;++k)
for(int j=0;j<=k;++j)
tmp[k]=(tmp[k]+1ll*m*C[k][j]%MOD*f[j])%MOD;
for(int i=0;i<=m;++i)f[i]=tmp[i];
}
}
int main()
{
cin>>n>>m;
for(int i=0;i<=m;++i)C[i][0]=1;
for(int i=1;i<=m;++i)
for(int j=1;j<=i;++j)
C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
Solve(n);
cout<<f[m]<<endl;
return 0;
}
然而如果你直接把上面的代码去交加强版就会\(T\)飞(时限\(1s\))
考虑更加优秀的方法。
直接令\(f(k)=\sum_{i=1}^n i^k m^i\)。
然后拿出来强行做个差:
mf(k)-f(k)&=\sum_{i=1}^n i^k m^{i+1}-\sum_{i=1}^n i^km^i\\
&=n^km^{n+1}+\sum_{i=1}^{n} (i-1)^km^i-\sum_{i=1}^n i^k m^i\\
&=n^km^{n+1}+\sum_{i=1}^{n}m^i((i-1)^k-i^k)\\
&=n^km^{n+1}+\sum_{i=1}^n m^i \sum_{j=0}^{k-1}{k\choose j}(-1)^{k-j}i^j\\
&=n^km^{n+1}+\sum_{j=0}^{k-1}{k\choose j}(-1)^{k-j}\sum_{i=1}^n i^jm^i\\
&=n^km^{n+1}+\sum_{j=0}^{k-1}{k\choose j}(-1)^{k-j}f(j)\\
\end{aligned}\]
于是就可以做到\(O(m^2)\)了。
注意\(m=1\)的时候需要特判。
#include<iostream>
using namespace std;
#define MOD 1000000007
int n,m,f[1010],C[1010][1010],pw[1010],tmp[1010];
int fpow(int a,int b){int s=1;while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}return s;}
int main()
{
cin>>n>>m;
if(m==1){cout<<1ll*n*(n+1)/2%MOD<<endl;return 0;}
int inv=fpow(m-1,MOD-2);
for(int i=0;i<=m;++i)C[i][0]=1;
for(int i=1;i<=m;++i)
for(int j=1;j<=i;++j)
C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
f[0]=1ll*(fpow(m,n)+MOD-1)*inv%MOD*m%MOD;
for(int k=1,pwm=fpow(m,n+1),pw=n;k<=m;++k,pw=1ll*pw*n%MOD)
{
f[k]=1ll*pw*pwm%MOD;
for(int j=0,d=((k&1)?(MOD-1):1);j<k;++j,d=MOD-d)
f[k]=(f[k]+1ll*C[k][j]*d%MOD*f[j])%MOD;
f[k]=1ll*f[k]*inv%MOD;
}
cout<<f[m]<<endl;
return 0;
}
似乎还要一个更强的版本,然而我不会做QwQ。
【BZOJ3157/3516】国王奇遇记(数论)的更多相关文章
- bzoj3157 3516 国王奇遇记
Description Input 共一行包括两个正整数N和M. Output 共一行为所求表达式的值对10^9+7取模的值. 特判m=1 m≠1时: 设S[u]=sigma(i^u*m^i) m*S ...
- BZOJ3157: 国王奇遇记 & 3516: 国王奇遇记加强版
令\[S_i=\sum_{k=1}^n k^i m^k\]我们有\[\begin{eqnarray*}(m-1)S_i & = & mS_i - S_i \\& = & ...
- bzoj 3157 && bzoj 3516 国王奇遇记——推式子
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3157 https://www.lydsy.com/JudgeOnline/problem.p ...
- bzoj 3157 & bzoj 3516 国王奇遇记 —— 推式子
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3157 https://www.lydsy.com/JudgeOnline/problem.p ...
- BZOJ3157/BZOJ3516 国王奇遇记(矩阵快速幂/数学)
由二项式定理,(m+1)k=ΣC(k,i)*mi.由此可以构造矩阵转移,将mi*ik全部塞进去即可,系数即为组合数*m.复杂度O(m3logn),因为大常数喜闻乐见的T掉了. #include< ...
- 3157: 国王奇遇记 & 3516: 国王奇遇记加强版 - BZOJ
果然我数学不行啊,题解君: http://www.cnblogs.com/zhuohan123/p/3726933.html const h=; var fac,facinv,powm,s:..]of ...
- 【BZOJ4126】【BZOJ3516】【BZOJ3157】国王奇遇记 线性插值
题目描述 三倍经验题. 给你\(n,m\),求 \[ \sum_{i=1}^ni^mm^i \] \(n\leq {10}^9,1\leq m\leq 500000\) 题解 当\(m=1\)时\(a ...
- BZOJ 3516 国王奇遇记加强版(乱推)
题意 求\(\sum_{k=1}^{n}k^mm^k (n\leq1e9,m\leq1e3)\) 思路 在<>中有一个方法用来求和,称为摄动法. 我们考虑用摄动法来求这个和式,看能不能得到 ...
- 【BZOJ】【3157】&【BZOJ】【3516】国王奇遇记
数论 题解:http://www.cnblogs.com/zhuohan123/p/3726933.html copy一下推导过程: 令$$S_i=\sum_{k=1}^{n}k^im^k$$ 我们有 ...
随机推荐
- Eclipse中Git的使用以及IDEA中Git的使用
一.Eclipse中Git解决冲突步骤: 1.进行文件对比,将所有的文件添加到序列. 2.commit文件到本地仓库. 3.pull将远程仓库的代码更新到本地,若有冲突则会所有的文件显示冲突状态(真正 ...
- HTTPS的SSL证书配置
SSL证书 TOMCAT7.0部署_百度经验https://jingyan.baidu.com/article/7082dc1c65066be40a89bda8.html SSL证书安装指引 - 青春 ...
- Go To Oracle
1.下载mingw (gcc 编译)---win32 2.下载OCI最新版,存放于C:\instantclient_12_1 ---win32 3.下载OCI SDK最新版,存放于C:\ins ...
- Django Rest framework 框架之解析器
解析器 序列化***** 请求数据进行校验 对queryset进行序列化处理 分页 路由 视图 渲染器
- sed 双引号 单引号的区别
a="abcd" b="abc" sed -i '/$a/ s/$/$b/' test.a 我想在test.a中匹配以”abcd“开头的行,然后在行尾加入”ab ...
- sonar安装
##jdk不要用yum下载的 一.下载sonar源码 cd /usr/local/src wget https://sonarsource.bintray.com/Distribution/sonar ...
- python标准异常
什么是异常? 异常即是一个事件,该事件会在程序执行过程中发生,影响了程序的正常执行.一般情况下,在Python无法正常处理程序时就会发生一个异常.异常是Python对象,表示一个错误.当Python脚 ...
- linux通过命令行查看MySQL编码并修改-简洁版方法
云服务器环境:CentOS 7.4 因为服务器配置较低,故使用MySQL5.5 未进行设置前 1.查看字符编码: mysql> show variables like '%character%' ...
- LODOP用ADD_PRINT_IMAGE语句缩放打印图片
LODOP提高输出图片质量的方法:1.用ADD_PRINT_IMAGE语句打印图片,而且img元素的width和height属性要去掉或者设置足够大,这样就可以让下载引擎传给Lodop图片质量足够好; ...
- ADO.NET工具类(一)
using System; using System.Collections.Generic; using System.Text; using System.Data.SqlClient; usin ...