LOJ #2359. 「NOIP2016」天天爱跑步(倍增+线段树合并)
题意
题解
考虑把一个玩家的路径 \((x, y)\) 拆成两条,一条是 \(x\) 到 \(lca\) ( \(x, y\) 最近公共祖先) 的路径,另一条是 \(lca\) 到 \(y\) 的路径。(对于 \(x, y\) 是 \(lca\) 的情况需要特殊考虑一下就行了)
这个求 \(lca\) 的过程用倍增实现就行了。
假设令到达时间为 \(at\) 。
不难发现,在树上向上的路径满足 \(dep_u + at_u=d_1\) (深度+到达时间) 是个定值。这个可以这样考虑,向上走 到达时间 \(+1\) ,且深度会 \(-1\) ,所以不会变。
同理可得,向下走的路径满足 \(dep_u - at_u=d_2\) (深度-到达时间) 是个定值。
我们考虑对于一条路径,差分表示在树上,也就是 \(x \to y\) 这条路径,我们在 \(x\) 处加入, \(y\) 处除去。
然后考虑每次我们线段树合并两个子树维护关于 \(d_1\) 以及 \(d_2\) 出现的次数。
然后对于一个点 \(u\) 要查询的就是 \(dep_u + w_u = d_1'\) 的值,以及 \(dep_u - w_u = d_2'\) 的值。
时间复杂度是 \(O(n \log n)\) 的,其实跑得挺快的?
具体看代码实现吧qwq。
代码
#include <bits/stdc++.h>
#define For(i, l, r) for(register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for(register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Set(a, v) memset(a, v, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define debug(x) cout << #x << ": " << x << endl
#define DEBUG(...) fprintf(stderr, __VA_ARGS__)
using namespace std;
inline bool chkmin(int &a, int b) {return b < a ? a = b, 1 : 0;}
inline bool chkmax(int &a, int b) {return b > a ? a = b, 1 : 0;}
inline int read() {
int x = 0, fh = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fh = -1;
for (; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + (ch ^ 48);
return x * fh;
}
void File() {
#ifdef zjp_shadow
freopen ("2359.in", "r", stdin);
freopen ("2359.out", "w", stdout);
#endif
}
const int N = 3e5 + 1e3, Maxn = N * 40;
#define lson ls[o], l, mid
#define rson rs[o], mid + 1, r
struct Segment_Tree {
int ls[Maxn], rs[Maxn], sumv[Maxn], Size;
Segment_Tree() { Size = 0; }
void Update(int &o, int l, int r, int up, int uv) {
if (!o) o = ++ Size;
if (l == r) { sumv[o] += uv; return ; }
int mid = (l + r) >> 1;
if (up <= mid) Update(lson, up, uv); else Update(rson, up, uv);
}
int Query(int o, int l, int r, int qp) {
if (l == r) return sumv[o];
int mid = (l + r) >> 1;
return qp <= mid ? Query(lson, qp) : Query(rson, qp);
}
int Merge(int x, int y, int l, int r) {
if (!x || !y) return x | y;
if (l == r) { sumv[x] += sumv[y]; return x; }
int mid = (l + r) >> 1;
ls[x] = Merge(ls[x], ls[y], l, mid);
rs[x] = Merge(rs[x], rs[y], mid + 1, r);
return x;
}
} TU, TD;
int to[N][23], dep[N], Log2[N]; vector<int> G[N];
void Dfs_Init(int u, int fa = 0) {
to[u][0] = fa; dep[u] = dep[fa] + 1;
for (int v : G[u]) if (v != fa) Dfs_Init(v, u);
}
int tmp;
inline int Get_Lca(int x, int y) {
if (dep[x] < dep[y]) swap(x, y);
int gap = dep[x] - dep[y];
For (i, 0, Log2[gap] + 1)
if ((gap >> i) & 1) x = to[x][i];
if (x == y) return x;
Fordown (i, Log2[dep[x]], 0)
if (to[x][i] != to[y][i]) x = to[x][i], y = to[y][i]; tmp = y;
return to[x][0];
}
int n, m, W[N], ans[N];
vector<int> TagU[N], TagD[N], DelU[N], DelD[N];
int rtU[N], rtD[N];
void Dfs(int u, int fa = 0) {
for (int v : G[u]) if (v ^ fa) {
Dfs(v, u);
rtU[u] = TU.Merge(rtU[u], rtU[v], -n, n * 2);
rtD[u] = TD.Merge(rtD[u], rtD[v], -n, n * 2);
}
for (int pos : TagU[u]) TU.Update(rtU[u], -n, n * 2, pos, 1);
for (int pos : TagD[u]) TD.Update(rtD[u], -n, n * 2, pos, 1);
ans[u] = TU.Query(rtU[u], -n, n * 2, W[u] + dep[u]) +
TD.Query(rtD[u], -n, n * 2, W[u] - dep[u]) ;
for (int pos : DelU[u]) TU.Update(rtU[u], -n, n * 2, pos, -1);
for (int pos : DelD[u]) TD.Update(rtD[u], -n, n * 2, pos, -1);
}
int main () {
File();
n = read(); m = read();
For (i, 1, n - 1) { int u = read(), v = read(); G[u].push_back(v); G[v].push_back(u); }
Dfs_Init(1);
For (i, 2, n)
Log2[i] = Log2[i >> 1] + 1;
For (j, 1, Log2[n]) For (i, 1, n)
to[i][j] = to[to[i][j - 1]][j - 1];
For (i, 1, n)
W[i] = read();
For (i, 1, m) {
int x = read(), y = read(), Lca = Get_Lca(x, y);
int d1 = dep[x], d2 = - dep[x];
if (Lca == y) { TagU[x].push_back(d1); DelU[y].push_back(d1); continue ; }
if (Lca == x) { TagD[y].push_back(d2); DelD[x].push_back(d2); continue ; }
d2 = (dep[x] - dep[Lca] + 1) - dep[tmp];
TagU[x].push_back(d1); DelU[Lca].push_back(d1);
TagD[y].push_back(d2); DelD[tmp].push_back(d2);
}
Dfs(1);
For (i, 1, n)
printf ("%d%c", ans[i], i == iend ? '\n' : ' ');
return 0;
}
LOJ #2359. 「NOIP2016」天天爱跑步(倍增+线段树合并)的更多相关文章
- 「NOIP2016」天天爱跑步 题解
(声明:图片来源于网络) 「NOIP2016」天天爱跑步 题解 题目TP门 题目 题目描述 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.<天天爱跑步>是 ...
- [NOIP2016 DAY1 T2]天天爱跑步-[差分+线段树合并][解题报告]
[NOIP2016 DAY1 T2]天天爱跑步 题面: B[NOIP2016 DAY1]天天爱跑步 时间限制 : - MS 空间限制 : 565536 KB 评测说明 : 2s Description ...
- 洛谷P1600 天天爱跑步(线段树合并)
小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.<天天爱跑步>是一个养成类游戏,需要玩家每天按时上线,完成打卡任务. 这个游戏的地图可以看作一一棵包含 nn ...
- LOJ2359. 「NOIP2016」天天爱跑步【树上差分】
LINK 思路 首先发现如果对于一个节点,假设一个节点需要统计从字数内来的贡献 需要满足\(dep_u - dep_s = w_u\) 这个条件其实可以转化成\(dep_u - w_u = dep_s ...
- 「NOIP2016」天天爱跑步
传送门 Luogu 解题思路 树上差分+桶计数. 我们发现在一条路径上的点 \(i\) ,它可以观测到玩家的条件是: \(i \in (u \to LCA),dep_u=w_i+dep_i\) \(i ...
- BZOJ4719 NOIP2016天天爱跑步(线段树合并)
线段树合并的话这个noip最难题就是个裸题了. 注意merge最后return x,以及如果需要区间查询的话这里还需要up,无数次死于这里. #include<iostream> #inc ...
- 「BZOJ2733」「洛谷3224」「HNOI2012」永无乡【线段树合并】
题目链接 [洛谷] 题解 很明显是要用线段树合并的. 对于当前的每一个连通块都建立一个权值线段树. 权值线段树处理操作中的\(k\)大的问题. 如果需要合并,那么就线段树暴力合并,时间复杂度是\(nl ...
- LOJ2537. 「PKUWC2018」Minimax【概率DP+线段树合并】
LINK 思路 首先暴力\(n^2\)是很好想的,就是把当前节点概率按照权值大小做前缀和和后缀和然后对于每一个值直接在另一个子树里面算出贡献和就可以了,注意乘上选最大的概率是小于当前权值的部分,选最小 ...
- NOIP2016 天天爱跑步(线段树/桶)
题目描述 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.天天爱跑步是一个养成类游戏,需要 玩家每天按时上线,完成打卡任务. 这个游戏的地图可以看作一一棵包含 N个结点 ...
随机推荐
- 14-Requests+正则表达式爬取猫眼电影
'''Requests+正则表达式爬取猫眼电影TOP100''''''流程框架:抓去单页内容:利用requests请求目标站点,得到单个网页HTML代码,返回结果.正则表达式分析:根据HTML代码分析 ...
- iOS 传感器集锦
https://www.jianshu.com/p/5fc26af852b6 传感器集锦:指纹识别.运动传感器.加速计.环境光感.距离传感器.磁力计.陀螺仪 效果预览.gif 一.指纹识别 应用: ...
- redis中的hash、列表、集合操作
一.hash操作 数据结构:key:{k1:v1, k2:v2, k3:v3} 类似Python中的字典 如:info : {name: lina, age: 22, sex: F} hset key ...
- 福州大学软件工程1816 | W班 第3次作业成绩排名
写在前面 汇总成绩排名链接 1.作业链接 第三次作业--原型设计(结对第一次) 2.评分准则 本次作业总分 25分,由以下部分组成: (1)在随笔开头请加上该博客链接,以方便阅读时查看作业需求,并备注 ...
- ocrosoft 1015 习题1.22 求一元二次方程a*x^2 + b*x + c = 0的根
http://acm.ocrosoft.com/problem.php?id=1015 题目描述 求一元二次方程a*x2 + b*x + c = 0的根.系数a.b.c为浮点数,其值在运行时由键盘输入 ...
- 中国科学技术大学统一身份认证系统CAS
CAS | Apereohttps://www.apereo.org/projects/cas 中国科学技术大学统一身份认证系统https://passport.ustc.edu.cn/login?s ...
- asp.net mvc 三种过滤器
前几天面试遇到这个问题,发现不是很了解,学习了下,这里记录下来 经常需要将用户的操作记录到日志中,或者是验证用户是否登录了网站, 面对这样的需求,以前的操作是自定义一个统一的全局方法,然后做处理, 在 ...
- Redis教程(Linux)
这里汇总了从简单的安装到较为复杂的配置,由浅入深的学习redis... 一 , 安装 1) redis扩展安装 从官网上下载扩展压缩包 wget http://pecl.php.net/get/red ...
- fiddler查看IP地址和请求响应时间
(一)fiddler查看IP地址 1.点击菜单栏rules——customize rules… 2.ctrl+f搜索“static function main” 3.在main函数里加入下面一行代码, ...
- connect、resource和dba三种标准角色
授权语句:grant connect,resource,dba to zwserver 经过授权以后,用户拥有connect.resource和dba三个角色的权限: (1)Connect 角色,是授 ...