题意

LOJ #2359. 「NOIP2016」天天爱跑步

题解

考虑把一个玩家的路径 \((x, y)\) 拆成两条,一条是 \(x\) 到 \(lca\) ( \(x, y\) 最近公共祖先) 的路径,另一条是 \(lca\) 到 \(y\) 的路径。(对于 \(x, y\) 是 \(lca\) 的情况需要特殊考虑一下就行了)

这个求 \(lca\) 的过程用倍增实现就行了。

假设令到达时间为 \(at\) 。

不难发现,在树上向上的路径满足 \(dep_u + at_u=d_1\) (深度+到达时间) 是个定值。这个可以这样考虑,向上走 到达时间 \(+1\) ,且深度会 \(-1\) ,所以不会变。

同理可得,向下走的路径满足 \(dep_u - at_u=d_2\) (深度-到达时间) 是个定值。

我们考虑对于一条路径,差分表示在树上,也就是 \(x \to y\) 这条路径,我们在 \(x\) 处加入, \(y\) 处除去。

然后考虑每次我们线段树合并两个子树维护关于 \(d_1\) 以及 \(d_2\) 出现的次数。

然后对于一个点 \(u\) 要查询的就是 \(dep_u + w_u = d_1'\) 的值,以及 \(dep_u - w_u = d_2'\) 的值。

时间复杂度是 \(O(n \log n)\) 的,其实跑得挺快的?

具体看代码实现吧qwq。

代码

#include <bits/stdc++.h>

#define For(i, l, r) for(register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for(register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Set(a, v) memset(a, v, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define debug(x) cout << #x << ": " << x << endl
#define DEBUG(...) fprintf(stderr, __VA_ARGS__) using namespace std; inline bool chkmin(int &a, int b) {return b < a ? a = b, 1 : 0;}
inline bool chkmax(int &a, int b) {return b > a ? a = b, 1 : 0;} inline int read() {
int x = 0, fh = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fh = -1;
for (; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + (ch ^ 48);
return x * fh;
} void File() {
#ifdef zjp_shadow
freopen ("2359.in", "r", stdin);
freopen ("2359.out", "w", stdout);
#endif
} const int N = 3e5 + 1e3, Maxn = N * 40; #define lson ls[o], l, mid
#define rson rs[o], mid + 1, r struct Segment_Tree { int ls[Maxn], rs[Maxn], sumv[Maxn], Size; Segment_Tree() { Size = 0; } void Update(int &o, int l, int r, int up, int uv) {
if (!o) o = ++ Size;
if (l == r) { sumv[o] += uv; return ; }
int mid = (l + r) >> 1;
if (up <= mid) Update(lson, up, uv); else Update(rson, up, uv);
} int Query(int o, int l, int r, int qp) {
if (l == r) return sumv[o];
int mid = (l + r) >> 1;
return qp <= mid ? Query(lson, qp) : Query(rson, qp);
} int Merge(int x, int y, int l, int r) {
if (!x || !y) return x | y;
if (l == r) { sumv[x] += sumv[y]; return x; }
int mid = (l + r) >> 1;
ls[x] = Merge(ls[x], ls[y], l, mid);
rs[x] = Merge(rs[x], rs[y], mid + 1, r);
return x;
} } TU, TD; int to[N][23], dep[N], Log2[N]; vector<int> G[N]; void Dfs_Init(int u, int fa = 0) {
to[u][0] = fa; dep[u] = dep[fa] + 1;
for (int v : G[u]) if (v != fa) Dfs_Init(v, u);
} int tmp;
inline int Get_Lca(int x, int y) {
if (dep[x] < dep[y]) swap(x, y);
int gap = dep[x] - dep[y];
For (i, 0, Log2[gap] + 1)
if ((gap >> i) & 1) x = to[x][i];
if (x == y) return x; Fordown (i, Log2[dep[x]], 0)
if (to[x][i] != to[y][i]) x = to[x][i], y = to[y][i]; tmp = y;
return to[x][0];
} int n, m, W[N], ans[N]; vector<int> TagU[N], TagD[N], DelU[N], DelD[N]; int rtU[N], rtD[N];
void Dfs(int u, int fa = 0) {
for (int v : G[u]) if (v ^ fa) {
Dfs(v, u);
rtU[u] = TU.Merge(rtU[u], rtU[v], -n, n * 2);
rtD[u] = TD.Merge(rtD[u], rtD[v], -n, n * 2);
}
for (int pos : TagU[u]) TU.Update(rtU[u], -n, n * 2, pos, 1);
for (int pos : TagD[u]) TD.Update(rtD[u], -n, n * 2, pos, 1); ans[u] = TU.Query(rtU[u], -n, n * 2, W[u] + dep[u]) +
TD.Query(rtD[u], -n, n * 2, W[u] - dep[u]) ; for (int pos : DelU[u]) TU.Update(rtU[u], -n, n * 2, pos, -1);
for (int pos : DelD[u]) TD.Update(rtD[u], -n, n * 2, pos, -1);
} int main () { File(); n = read(); m = read(); For (i, 1, n - 1) { int u = read(), v = read(); G[u].push_back(v); G[v].push_back(u); } Dfs_Init(1); For (i, 2, n)
Log2[i] = Log2[i >> 1] + 1;
For (j, 1, Log2[n]) For (i, 1, n)
to[i][j] = to[to[i][j - 1]][j - 1]; For (i, 1, n)
W[i] = read(); For (i, 1, m) {
int x = read(), y = read(), Lca = Get_Lca(x, y); int d1 = dep[x], d2 = - dep[x]; if (Lca == y) { TagU[x].push_back(d1); DelU[y].push_back(d1); continue ; }
if (Lca == x) { TagD[y].push_back(d2); DelD[x].push_back(d2); continue ; } d2 = (dep[x] - dep[Lca] + 1) - dep[tmp];
TagU[x].push_back(d1); DelU[Lca].push_back(d1);
TagD[y].push_back(d2); DelD[tmp].push_back(d2);
} Dfs(1);
For (i, 1, n)
printf ("%d%c", ans[i], i == iend ? '\n' : ' '); return 0; }

LOJ #2359. 「NOIP2016」天天爱跑步(倍增+线段树合并)的更多相关文章

  1. 「NOIP2016」天天爱跑步 题解

    (声明:图片来源于网络) 「NOIP2016」天天爱跑步 题解 题目TP门 题目 题目描述 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.<天天爱跑步>是 ...

  2. [NOIP2016 DAY1 T2]天天爱跑步-[差分+线段树合并][解题报告]

    [NOIP2016 DAY1 T2]天天爱跑步 题面: B[NOIP2016 DAY1]天天爱跑步 时间限制 : - MS 空间限制 : 565536 KB 评测说明 : 2s Description ...

  3. 洛谷P1600 天天爱跑步(线段树合并)

    小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.<天天爱跑步>是一个养成类游戏,需要玩家每天按时上线,完成打卡任务. 这个游戏的地图可以看作一一棵包含 nn ...

  4. LOJ2359. 「NOIP2016」天天爱跑步【树上差分】

    LINK 思路 首先发现如果对于一个节点,假设一个节点需要统计从字数内来的贡献 需要满足\(dep_u - dep_s = w_u\) 这个条件其实可以转化成\(dep_u - w_u = dep_s ...

  5. 「NOIP2016」天天爱跑步

    传送门 Luogu 解题思路 树上差分+桶计数. 我们发现在一条路径上的点 \(i\) ,它可以观测到玩家的条件是: \(i \in (u \to LCA),dep_u=w_i+dep_i\) \(i ...

  6. BZOJ4719 NOIP2016天天爱跑步(线段树合并)

    线段树合并的话这个noip最难题就是个裸题了. 注意merge最后return x,以及如果需要区间查询的话这里还需要up,无数次死于这里. #include<iostream> #inc ...

  7. 「BZOJ2733」「洛谷3224」「HNOI2012」永无乡【线段树合并】

    题目链接 [洛谷] 题解 很明显是要用线段树合并的. 对于当前的每一个连通块都建立一个权值线段树. 权值线段树处理操作中的\(k\)大的问题. 如果需要合并,那么就线段树暴力合并,时间复杂度是\(nl ...

  8. LOJ2537. 「PKUWC2018」Minimax【概率DP+线段树合并】

    LINK 思路 首先暴力\(n^2\)是很好想的,就是把当前节点概率按照权值大小做前缀和和后缀和然后对于每一个值直接在另一个子树里面算出贡献和就可以了,注意乘上选最大的概率是小于当前权值的部分,选最小 ...

  9. NOIP2016 天天爱跑步(线段树/桶)

    题目描述 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.天天爱跑步是一个养成类游戏,需要 玩家每天按时上线,完成打卡任务. 这个游戏的地图可以看作一一棵包含 N个结点 ...

随机推荐

  1. c++入门之初话指针

    先上代码:再进行总结知识: # include "iostream" struct ant_year_end { int year; }; int main() { using n ...

  2. PS绘制扁平化风格相机镜头UI图标

    一.新建一个画布,绘制一个460*460图层,圆角半径40像素.填充渐变颜色,加一点点投影,这样就有质感了. 二.接下来我们要来绘制主体部分,绘制一个圆,大小400*400,用内阴影,渐变叠加,投影得 ...

  3. 网络七层模型及TCP、UDP,一次HTTP请求都发生了什么

    一.七层网络模型 http协议运行在应用层   二.TCP-UDP TCP.UDP协议的区别 一次Http 请求,这个过程都发生了什么 TCP 协议如何保证可靠传输 HTTP和HTTPS的区别 TCP ...

  4. html总结:固定表格中单元格宽度

    当然要提前设置好table的width值,然后再写这个,使得每列宽度都相等. <style> table { table-layout: fixed; } </style>

  5. Use the Microsoft Symbol for VS and Windbg

    快捷方式mklink的远程符号由于所有者权限问题,链接到本地可能造成不能使用, 或每次都需要重新下载, 1.环境变量中没有设置_NT_SYMBOL_PATH的值 2.windbg快捷方式中也没有设置- ...

  6. iOS 10的两个坑

    iOS 10出现白屏幕,其他机型不会. 一个bug 手机连上电脑,在电脑端的Safari里,看到了如下的错误: SyntaxError: Cannot declare a let variable t ...

  7. [转帖]全国产 台式机/笔记本/服务器都有 方正龙芯3A3000整机三连发

    台式机/笔记本/服务器都有 方正龙芯3A3000整机三连发 2019年03月29日 17:17 4171 次阅读 稿源:快科技 7 条评论 https://www.cnbeta.com/article ...

  8. vue.js实战——vue 实时时间

    created:实例创建完成后调用,此阶段完成了数据的观测等,但尚未挂载,$el还不可用,需要初始化处理一些数据时会比较有用. mounted:el挂载到实例上后调用,一般我们的第一个业务逻辑会在这里 ...

  9. js 解决中文乱码的问题

    1.对象 request response 对象setCharacterEncoding=UTF-8 1 <%@ page language="java" contentTy ...

  10. countByValue

    [1,2,3,3]的RDD rdd.foreach(println)---------------------1 2 3 3