CodeForces Round #548 Div2
http://codeforces.com/contest/1139
You are given a string s=s1s2…sns=s1s2…sn of length nn, which only contains digits 11, 22, ..., 99.
A substring s[l…r]s[l…r] of ss is a string slsl+1sl+2…srslsl+1sl+2…sr. A substring s[l…r]s[l…r] of ss is called even if the number represented by it is even.
Find the number of even substrings of ss. Note, that even if some substrings are equal as strings, but have different ll and rr, they are counted as different substrings.
The first line contains an integer nn (1≤n≤650001≤n≤65000) — the length of the string ss.
The second line contains a string ss of length nn. The string ss consists only of digits 11, 22, ..., 99.
Print the number of even substrings of ss.
4
1234
6
4
2244
10
In the first example, the [l,r][l,r] pairs corresponding to even substrings are:
- s[1…2]s[1…2]
- s[2…2]s[2…2]
- s[1…4]s[1…4]
- s[2…4]s[2…4]
- s[3…4]s[3…4]
- s[4…4]s[4…4]
In the second example, all 1010 substrings of ss are even substrings. Note, that while substrings s[1…1]s[1…1] and s[2…2]s[2…2] both define the substring "2", they are still counted as different substrings.
代码:
#include <bits/stdc++.h>
using namespace std; int N;
string s; int main() {
cin >> N >> s;
int ans = ;
for(int i = ; i < N; i ++) {
if((s[i] - '') % == ) ans += (i + );
}
printf("%d\n", ans);
return ;
}
You went to the store, selling nn types of chocolates. There are aiai chocolates of type ii in stock.
You have unlimited amount of cash (so you are not restricted by any prices) and want to buy as many chocolates as possible. However if you buy xixi chocolates of type ii (clearly, 0≤xi≤ai0≤xi≤ai), then for all 1≤j<i1≤j<i at least one of the following must hold:
- xj=0xj=0 (you bought zero chocolates of type jj)
- xj<xixj<xi (you bought less chocolates of type jj than of type ii)
For example, the array x=[0,0,1,2,10]x=[0,0,1,2,10] satisfies the requirement above (assuming that all ai≥xiai≥xi), while arrays x=[0,1,0]x=[0,1,0], x=[5,5]x=[5,5] and x=[3,2]x=[3,2] don't.
Calculate the maximum number of chocolates you can buy.
The first line contains an integer nn (1≤n≤2⋅1051≤n≤2⋅105), denoting the number of types of chocolate.
The next line contains nn integers aiai (1≤ai≤1091≤ai≤109), denoting the number of chocolates of each type.
Print the maximum number of chocolates you can buy.
5
1 2 1 3 6
10
5
3 2 5 4 10
20
4
1 1 1 1
1
In the first example, it is optimal to buy: 0+0+1+3+60+0+1+3+6 chocolates.
In the second example, it is optimal to buy: 1+2+3+4+101+2+3+4+10 chocolates.
In the third example, it is optimal to buy: 0+0+0+10+0+0+1 chocolates.
代码:
#include <bits/stdc++.h>
using namespace std; const int maxn = 2e5 + ;
int N;
int a[maxn]; int main() {
scanf("%d", &N);
for(int i = ; i < N; i ++)
scanf("%d", &a[i]); long long ans = a[N - ];
int maxx = a[N - ];
for(int i = N - ; i >= ; i --) {
if(maxx == ) break;
if(a[i] < maxx) {
ans += a[i];
maxx = a[i];
} else {
ans += (maxx - );
maxx --;
} }
cout << ans << endl;
//printf("%lld\n", ans); return ;
}
You are given a tree (a connected undirected graph without cycles) of nn vertices. Each of the n−1n−1 edges of the tree is colored in either black or red.
You are also given an integer kk. Consider sequences of kk vertices. Let's call a sequence [a1,a2,…,ak][a1,a2,…,ak] good if it satisfies the following criterion:
- We will walk a path (possibly visiting same edge/vertex multiple times) on the tree, starting from a1a1 and ending at akak.
- Start at a1a1, then go to a2a2 using the shortest path between a1a1 and a2a2, then go to a3a3 in a similar way, and so on, until you travel the shortest path between ak−1ak−1 and akak.
- If you walked over at least one black edge during this process, then the sequence is good.

Consider the tree on the picture. If k=3k=3 then the following sequences are good: [1,4,7][1,4,7], [5,5,3][5,5,3] and [2,3,7][2,3,7]. The following sequences are not good: [1,4,6][1,4,6], [5,5,5][5,5,5], [3,7,3][3,7,3].
There are nknk sequences of vertices, count how many of them are good. Since this number can be quite large, print it modulo 109+7109+7.
The first line contains two integers nn and kk (2≤n≤1052≤n≤105, 2≤k≤1002≤k≤100), the size of the tree and the length of the vertex sequence.
Each of the next n−1n−1 lines contains three integers uiui, vivi and xixi (1≤ui,vi≤n1≤ui,vi≤n, xi∈{0,1}xi∈{0,1}), where uiui and vivi denote the endpoints of the corresponding edge and xixi is the color of this edge (00 denotes red edge and 11 denotes black edge).
Print the number of good sequences modulo 109+7109+7.
4 4
1 2 1
2 3 1
3 4 1
252
4 6
1 2 0
1 3 0
1 4 0
0
3 5
1 2 1
2 3 0
210
In the first example, all sequences (4444) of length 44 except the following are good:
- [1,1,1,1][1,1,1,1]
- [2,2,2,2][2,2,2,2]
- [3,3,3,3][3,3,3,3]
- [4,4,4,4][4,4,4,4]
In the second example, all edges are red, hence there aren't any good sequences.
代码:
#include <bits/stdc++.h>
using namespace std; const int mod = 1e9 + ;
const int maxn = 1e5 + ;
int N, K;
int num;
vector<int> v[maxn];
int vis[maxn]; long long Pow(long long a, long long b) {
long long ans1 = ; a = a % mod; while(b) {
if(b % ) {
ans1 = (ans1 * a) % mod;
b --;
} else {
a = (a * a) % mod;
b /= ;
}
}
return ans1;
} void dfs(int st) {
if(v[st].size() == ) {
num ++;
return ;
} for(int i = ; i < v[st].size(); i ++) {
if(vis[v[st][i]] == ) {
vis[v[st][i]] = ;
num ++;
dfs(v[st][i]);
}
}
} int main() {
scanf("%d%d", &N, &K);
memset(vis, , sizeof(vis));
for(int i = ; i < N - ; i ++) {
int st, en, col;
scanf("%d%d%d", &st, &en, &col);
if(col == ) {
v[st].push_back(en);
v[en].push_back(st);
}
} long long ans = ;
for(int i = ; i <= N; i ++) {
if(vis[i]) continue;
num = ;
dfs(i);
ans = (ans + Pow(num, K)) % mod;
ans %= mod;
} ans = (Pow(N, K) - ans + mod) % mod;
cout << ans << endl; return ;
}
There are nn students and mm clubs in a college. The clubs are numbered from 11 to mm. Each student has a potential pipi and is a member of the club with index cici. Initially, each student is a member of exactly one club. A technical fest starts in the college, and it will run for the next dd days. There is a coding competition every day in the technical fest.
Every day, in the morning, exactly one student of the college leaves their club. Once a student leaves their club, they will never join any club again. Every day, in the afternoon, the director of the college will select one student from each club (in case some club has no members, nobody is selected from that club) to form a team for this day's coding competition. The strength of a team is the mex of potentials of the students in the team. The director wants to know the maximum possible strength of the team for each of the coming dddays. Thus, every day the director chooses such team, that the team strength is maximized.
The mex of the multiset SS is the smallest non-negative integer that is not present in SS. For example, the mex of the {0,1,1,2,4,5,9}{0,1,1,2,4,5,9} is 33, the mex of {1,2,3}{1,2,3} is 00 and the mex of ∅∅ (empty set) is 00.
The first line contains two integers nn and mm (1≤m≤n≤50001≤m≤n≤5000), the number of students and the number of clubs in college.
The second line contains nn integers p1,p2,…,pnp1,p2,…,pn (0≤pi<50000≤pi<5000), where pipi is the potential of the ii-th student.
The third line contains nn integers c1,c2,…,cnc1,c2,…,cn (1≤ci≤m1≤ci≤m), which means that ii-th student is initially a member of the club with index cici.
The fourth line contains an integer dd (1≤d≤n1≤d≤n), number of days for which the director wants to know the maximum possible strength of the team.
Each of the next dd lines contains an integer kiki (1≤ki≤n1≤ki≤n), which means that kiki-th student lefts their club on the ii-th day. It is guaranteed, that the kiki-th student has not left their club earlier.
For each of the dd days, print the maximum possible strength of the team on that day.
5 3
0 1 2 2 0
1 2 2 3 2
5
3
2
4
5
1
3
1
1
1
0
5 3
0 1 2 2 1
1 3 2 3 2
5
4
2
3
5
1
3
2
2
1
0
5 5
0 1 2 4 5
1 2 3 4 5
4
2
3
5
4
1
1
1
1
Consider the first example:
On the first day, student 33 leaves their club. Now, the remaining students are 11, 22, 44 and 55. We can select students 11, 22 and 44 to get maximum possible strength, which is 33. Note, that we can't select students 11, 22 and 55, as students 22 and 55 belong to the same club. Also, we can't select students 11, 33 and 44, since student 33 has left their club.
On the second day, student 22 leaves their club. Now, the remaining students are 11, 44 and 55. We can select students 11, 44 and 55 to get maximum possible strength, which is 11.
On the third day, the remaining students are 11 and 55. We can select students 11 and 55 to get maximum possible strength, which is 11.
On the fourth day, the remaining student is 11. We can select student 11 to get maximum possible strength, which is 11.
On the fifth day, no club has students and so the maximum possible strength is 00.
代码:
#include <bits/stdc++.h>
using namespace std; const int maxn = ;
int N, M, Q;
int vis[maxn], see[maxn], sz[maxn], mp[maxn];
int p[maxn], c[maxn];
vector<int> v[maxn];
int ans = INT_MIN;
vector<int> s; int mex(vector<int> &v) {
int szz = v.size();
if(szz == ) return ;
memset(see, , sizeof(see));
for(int i = ; i < szz; i ++)
see[v[i]] = ;
int temp = ;
for(int i = ; i <= maxn; i ++) {
if(!see[i]) {
temp = i;
break;
}
}
return temp;
} vector<vector<int> > out;
void dfs(int step, vector<int> &s) {
if(step == M + ) {
if(mex(s) >= ans)
ans = mex(s);
//out.push_back(s);
return ;
} if(sz[step] == ) dfs(step + , s);
for(int i = ; i < v[step].size(); i ++) {
if(!vis[v[step][i]]) {
vis[v[step][i]] = ;
s.push_back(p[v[step][i]]);
dfs(step + , s);
s.pop_back();
vis[v[step][i]] = ;
}
}
} int main() {
memset(sz, , sizeof(sz));
scanf("%d%d", &N, &M);
for(int i = ; i <= N; i ++)
scanf("%d", &p[i]);
for(int i = ; i <= N; i ++) {
scanf("%d", &c[i]);
v[c[i]].push_back(i);
sz[c[i]] ++;
mp[i] = c[i];
}
memset(vis, , sizeof(vis));
scanf("%d", &Q);
while(Q --) {
int x;
scanf("%d", &x);
vis[x] = ;
sz[mp[x]] --;
ans = INT_MIN;
out.clear();
vector<int> b;
dfs(, s);
//for(int i = 0; i < out.size(); i ++) {
//for(int j = 0; j <out[i].size(); j ++)
// printf("%d ", out[i][j]);
//printf("@@@@ %d\n", mex(out[i]));
// ans = max(ans, mex(out[i]));
//}
printf("%d\n", ans);
} /*scanf("%d", &N);
vector<int> zlr;
for(int i = 0; i < N; i ++) {
int x;
scanf("%d", &x);
zlr.push_back(x);
}
printf("%d\n", mex(zlr));*/
return ;
} //3 16 0 14 2 15 1
花了两个来小时你给我 TLE 改了无数遍还是不行 事实证明并不能暴力出奇迹 所以查了题解搞出来一个匈牙利算法也是看的一脸懵了 所以先把 TLE 的贴出来(我不管 就算 TLE 也要贴 毕竟这是我的一下午了。。。)
CodeForces Round #548 Div2的更多相关文章
- Codeforces Round #539 div2
Codeforces Round #539 div2 abstract I 离散化三连 sort(pos.begin(), pos.end()); pos.erase(unique(pos.begin ...
- Codeforces Round 548 (Div. 2)
layout: post title: Codeforces Round 548 (Div. 2) author: "luowentaoaa" catalog: true tags ...
- 【前行】◇第3站◇ Codeforces Round #512 Div2
[第3站]Codeforces Round #512 Div2 第三题莫名卡半天……一堆细节没处理,改一个发现还有一个……然后就炸了,罚了一啪啦时间 Rating又掉了……但是没什么,比上一次好多了: ...
- Codeforces Round#320 Div2 解题报告
Codeforces Round#320 Div2 先做个标题党,骗骗访问量,结束后再来写咯. codeforces 579A Raising Bacteria codeforces 579B Fin ...
- Codeforces Round #564(div2)
Codeforces Round #564(div2) 本来以为是送分场,结果成了送命场. 菜是原罪 A SB题,上来读不懂题就交WA了一发,代码就不粘了 B 简单构造 很明显,\(n*n\)的矩阵可 ...
- Codeforces Round #361 div2
ProblemA(Codeforces Round 689A): 题意: 给一个手势, 问这个手势是否是唯一. 思路: 暴力, 模拟将这个手势上下左右移动一次看是否还在键盘上即可. 代码: #incl ...
- Codeforces Round #626 Div2 D,E
比赛链接: Codeforces Round #626 (Div. 2, based on Moscow Open Olympiad in Informatics) D.Present 题意: 给定大 ...
- CodeForces Round 192 Div2
This is the first time I took part in Codeforces Competition.The only felt is that my IQ was contemp ...
- Codeforces Round #359 div2
Problem_A(CodeForces 686A): 题意: \[ 有n个输入, +\space d_i代表冰淇淋数目增加d_i个, -\space d_i表示某个孩纸需要d_i个, 如果你现在手里 ...
随机推荐
- kafka_2.11-2.0.0_安装部署
参考博文:kafka 配置文件参数详解 参考博文:Kafka[第一篇]Kafka集群搭建 参考博文:如何为Kafka集群选择合适的Partitions数量 参考博文:Kafka Server.prop ...
- 设计模式のFlyweight(享元模式)----结构模式
一.产生背景 享元模式:它使用共享物件,用来尽可能减少内存使用量以及分享资讯给尽可能多的相似物件:它适合用于只是因重复而导致使用无法令人接受的大量内存的大量物件.通常物件中的部分状态是可以分享.常见做 ...
- Nginx代理与负载均衡
序言 Nginx的代理功能与负载均衡功能是最常被用到的,关于nginx的基本语法常识与配置已在上篇文章中有说明,这篇就开门见山,先描述一些关于代理功能的配置,再说明负载均衡详细. Nginx代理服务的 ...
- UVA1616-Caravan Robbers(二分)
Problem UVA1616-Caravan Robbers Accept: 96 Submit: 946Time Limit: 3000 mSec Problem Description Lon ...
- Python写代码的用法建议
1.Mutable and immutable types Python有两种内置或用户定义的类型 可变类型是允许就地修改内容的类型.典型的可变列表是列表和词典:所有列表都有变异方法,如 list.a ...
- P1897 电梯里的爱情
简单模拟: 没什么好说的,因为范围比较水,所以直接按题意直接模拟1就好 #include<iostream> using namespace std; #define ll long lo ...
- 【转】android SDK中的ddms使用详解
一.查看线程信息1.展开左侧设备节点,选择进程: 2.点击更新线程信息图标: 注意:如果你没有运行或调试程序的话,这些图标是不可用的! 3.右侧选择“Threads”标签: 二.查看堆栈信息1.展开左 ...
- Zookeeper系列一:Zookeeper介绍、Zookeeper安装配置、ZK Shell的使用
https://www.cnblogs.com/leeSmall/p/9563547.html 一.Zookeeper介绍 1. 介绍Zookeeper之前先来介绍一下分布式 1.1 分布式主要是下面 ...
- day25 Python四个可以实现自省的函数,反射
python面向对象中的反射:通过字符串的形式操作对象相关的属性.python中的一切事物都是对象(都可以使用反射) 四个可以实现自省的函数 下列方法适用于类和对象(一切皆对象,类本身也是一个对象) ...
- 初学Python——第一节课
一.Python语言的特性: 1.与C语言不同,Python语言是一门解释性语言.程序在执行过程中,执行一步.编译一步. 2.Python是一个动态类型语言,不需要定义变量的数据类型. 3.Pytho ...