题目链接 \(Click\) \(Here\)

这题的写法非常巧妙。

每个位置的点向它的下一个位置连一个容量为\(INF\)的边,从区间的左端点往右端点拉一条容量为\(1\),费用为区间长度的边,从起点向点\(1\)连一条容量为\(k\)的边,限制只能流\(k\)次。这个建模的巧妙之处就在,它并没有明面上限制某个点最多经过\(k\)次,却实际上使路径单向,从而每一次流过都最多经过每个点一次,同时也并不会对并没有相交的区间造成影响。

#include <bits/stdc++.h>
using namespace std; const int N = 100010;
const int M = 400010;
const int INF = 0x3f3f3f3f; int n, k, tot, l[N], r[N], len[N], pos[N]; int cnt = -1, head[N]; struct edge {
int nxt, to, w, f;
}e[M]; void add_edge (int from, int to, int flw, int val) {
e[++cnt].nxt = head[from];
e[cnt].to = to;
e[cnt].w = val;
e[cnt].f = flw;
head[from] = cnt;
} void add_len (int u, int v, int f, int w) {
add_edge (u, v, f, +w);
add_edge (v, u, 0, -w);
} void discretize () {
for (int i = 1; i <= n; ++i) {
cin >> l[i] >> r[i];
len[i] = r[i] - l[i];
pos[i * 2 - 1] = l[i], pos[i * 2] = r[i];
}
sort (pos + 1, pos + 1 + n * 2);
tot = unique (pos + 1, pos + 1 + n * 2) - pos - 1;
for (int i = 1; i <= n; ++i) {
l[i] = lower_bound (pos + 1, pos + 1 + tot, l[i]) - pos;
r[i] = lower_bound (pos + 1, pos + 1 + tot, r[i]) - pos;
}
} queue <int> q;
int dis[N], vis[N], flow[N];
int pre_node[N], pre_edge[N]; int spfa (int s, int t) {
memset (vis, 0, sizeof (vis));
memset (dis, -0x3f, sizeof (dis));
memset (flow, 0x3f, sizeof (flow));
q.push (s); vis[s] = true; dis[s] = 0;
while (!q.empty ()) {
int u = q.front (); q.pop ();
for (int i = head[u]; ~i; i = e[i].nxt) {
int v = e[i].to;
if (dis[v] < dis[u] + e[i].w && e[i].f) {
dis[v] = dis[u] + e[i].w;
flow[v] = min (flow[u], e[i].f);
pre_edge[v] = i;
pre_node[v] = u;
if (!vis[v]) {
vis[v] = true;
q.push (v);
}
}
}
vis[u] = false;
}
return dis[t] != dis[0];
} int main () {
memset (head, -1, sizeof (head));
cin >> n >> k;
discretize ();
int s = tot + 1, t = tot + 2;
add_len (s, 1, k, 0);
add_len (tot, t, k, 0);
for (int i = 1; i < tot; ++i) {
add_len (i, i + 1, INF, 0);
}
for (int i = 1; i <= n; ++i) {
add_len (l[i], r[i], 1, len[i]);
}
int max_cost = 0;
while (spfa (s, t)) {
max_cost += dis[t] * flow[t];
int u = t;
while (u != s) {
e[pre_edge[u] ^ 0].f -= flow[t];
e[pre_edge[u] ^ 1].f += flow[t];
u = pre_node[u];
}
}
cout << max_cost << endl;
}

P3358 最长k可重区间集问题的更多相关文章

  1. 网络流 P3358 最长k可重区间集问题

    P3358 最长k可重区间集问题 题目描述 对于给定的开区间集合 I 和正整数 k,计算开区间集合 I 的最长 k可重区间集的长度. 输入输出格式 输入格式: 的第 1 行有 2 个正整数 n和 k, ...

  2. (luogu P3358)最长k可重区间集问题 [TPLY]

    最长k可重区间集问题 题目链接 https://www.luogu.org/problemnew/show/3358 做法 所有点向下一个点连容量为k费用为0的边 l和r连容量为1费用为区间长度的边 ...

  3. 洛谷P3358 最长k可重区间集问题(费用流)

    题目描述 对于给定的开区间集合 I 和正整数 k,计算开区间集合 I 的最长 k可重区间集的长度. 输入输出格式 输入格式: 的第 1 行有 2 个正整数 n和 k,分别表示开区间的个数和开区间的可重 ...

  4. 洛谷P3358 最长k可重区间集问题(费用流)

    传送门 因为一个zz错误调了一个早上……汇点写错了……spfa也写错了……好吧好像是两个…… 把数轴上的每一个点向它右边的点连一条边,容量为$k$,费用为$0$,然后把每一个区间的左端点向右端点连边, ...

  5. luogu P3358 最长k可重区间集问题

    网络流建图好难,这题居然是网络流(雾,一般分析来说,有限制的情况最大流情况可以拆点通过capacity来限制,比如只使用一次,把一个点拆成入点出点,capacity为1即可,这题是限制最大k重复,可以 ...

  6. 【Luogu】P3358最长k可重区间集问题(费用流)

    题目链接 这题费用瘤,数据貌似还是错的. 把线段抽象抽象拆成两个点,入点表示左端,出点表示右端,连上容量为1费用-长度的边. 不相交线段随便连下,源点向拆出的原点S'连费用为0容量k,然后跑费用流. ...

  7. 洛谷 P3358 最长k可重区间集问题 【最大费用最大流】

    同 poj 3680 https:www.cnblogs.com/lokiii/p/8413139.html #include<iostream> #include<cstdio&g ...

  8. 最长k可重区间集

      P3358 最长k可重区间集问题 P3357 最长k可重线段集问题 P3356 火星探险问题 P4012 深海机器人问题 P3355 骑士共存问题 P2754 [CTSC1999]家园 题目描述 ...

  9. 「网络流24题」「LuoguP3358」 最长k可重区间集问题(费用流

    题目描述 对于给定的开区间集合 I 和正整数 k,计算开区间集合 I 的最长 k可重区间集的长度. 输入输出格式 输入格式: 的第 1 行有 2 个正整数 n和 k,分别表示开区间的个数和开区间的可重 ...

随机推荐

  1. Python——数组模块(array)

    一.模块说明 array模块是python中实现的一种高效的数组存储类型.它和list相似,但是所有的数组成员必须是同一种类型,在创建数组的时候,就确定了数组的类型. 二.代码

  2. 利用H5 FormData 实现表单中多图上传(可带其他如String类型数据)

    本篇的具体思路来源于右侧网址:http://blog.csdn.net/qq_19551571/article/details/49977983 本篇代码有所修改,请具体区分. 本篇使用的是 form ...

  3. 皮皮虾FAQ

    我们提供的软件,是市场上比较好操作的,如果有其他的软件也是可以使用我们的ip的 Windows 1.windows找不到粘贴的地方 window打开窗口后,请在屏幕右下角找小飞机,右键即可 2.win ...

  4. 一、Java多人博客系统-开篇

    作为一个程序员,工作之外的不断学习是必须的.这个项目是我个人课外学习和练手的项目.最开始是一个个人网站.当时发现京东云可以免费部署网站的,就立即写了一个网站,当时就使用jsp技术,可以实现发布博客.评 ...

  5. Nginx 对上游使用SSL链接

    L96 双向认证SSL指令示列 对下游使用证书指令 Syntax: ssl_certificate file; Default: — Context: http, server Syntax: ssl ...

  6. 部署 Django

    补充说明:关于项目部署,历来是开发和运维人员的痛点.造成部署困难的主要原因之一是大家的Linux环境不同,这包括发行版.解释器.插件.运行库.配置.版本级别等等太多太多的细节.因此,一个成功的部署案例 ...

  7. Linux下tomcat中多项目配置druid报错的问题

    这里有多种方法,推荐修改tomcat配置,即在启动JVM配置中设置如下: -Ddruid.registerToSysProperty=true 详解参见该博: https://blog.csdn.ne ...

  8. kubernetes 简单yaml文件运行例子deployment

    运行一个deployment: kubectl  run  nginx-deployment  --image=nginx:1.7.9  --replicas=2 基本例子: nginx-test.y ...

  9. Android 右上角菜单栏

    1 创建菜单栏 在res下新建menu文件夹,并且创建righttopmenu.xml righttopmenu.xml: <?xml version="1.0" encod ...

  10. Django 下载和初识

    Django Django官网下载页面 安装(安装最新LTS版): pip3 install django==1.11.9 创建一个django项目: 下面的命令创建了一个名为"mysite ...