P3358 最长k可重区间集问题
题目链接 \(Click\) \(Here\)
这题的写法非常巧妙。
每个位置的点向它的下一个位置连一个容量为\(INF\)的边,从区间的左端点往右端点拉一条容量为\(1\),费用为区间长度的边,从起点向点\(1\)连一条容量为\(k\)的边,限制只能流\(k\)次。这个建模的巧妙之处就在,它并没有明面上限制某个点最多经过\(k\)次,却实际上使路径单向,从而每一次流过都最多经过每个点一次,同时也并不会对并没有相交的区间造成影响。
#include <bits/stdc++.h>
using namespace std;
const int N = 100010;
const int M = 400010;
const int INF = 0x3f3f3f3f;
int n, k, tot, l[N], r[N], len[N], pos[N];
int cnt = -1, head[N];
struct edge {
int nxt, to, w, f;
}e[M];
void add_edge (int from, int to, int flw, int val) {
e[++cnt].nxt = head[from];
e[cnt].to = to;
e[cnt].w = val;
e[cnt].f = flw;
head[from] = cnt;
}
void add_len (int u, int v, int f, int w) {
add_edge (u, v, f, +w);
add_edge (v, u, 0, -w);
}
void discretize () {
for (int i = 1; i <= n; ++i) {
cin >> l[i] >> r[i];
len[i] = r[i] - l[i];
pos[i * 2 - 1] = l[i], pos[i * 2] = r[i];
}
sort (pos + 1, pos + 1 + n * 2);
tot = unique (pos + 1, pos + 1 + n * 2) - pos - 1;
for (int i = 1; i <= n; ++i) {
l[i] = lower_bound (pos + 1, pos + 1 + tot, l[i]) - pos;
r[i] = lower_bound (pos + 1, pos + 1 + tot, r[i]) - pos;
}
}
queue <int> q;
int dis[N], vis[N], flow[N];
int pre_node[N], pre_edge[N];
int spfa (int s, int t) {
memset (vis, 0, sizeof (vis));
memset (dis, -0x3f, sizeof (dis));
memset (flow, 0x3f, sizeof (flow));
q.push (s); vis[s] = true; dis[s] = 0;
while (!q.empty ()) {
int u = q.front (); q.pop ();
for (int i = head[u]; ~i; i = e[i].nxt) {
int v = e[i].to;
if (dis[v] < dis[u] + e[i].w && e[i].f) {
dis[v] = dis[u] + e[i].w;
flow[v] = min (flow[u], e[i].f);
pre_edge[v] = i;
pre_node[v] = u;
if (!vis[v]) {
vis[v] = true;
q.push (v);
}
}
}
vis[u] = false;
}
return dis[t] != dis[0];
}
int main () {
memset (head, -1, sizeof (head));
cin >> n >> k;
discretize ();
int s = tot + 1, t = tot + 2;
add_len (s, 1, k, 0);
add_len (tot, t, k, 0);
for (int i = 1; i < tot; ++i) {
add_len (i, i + 1, INF, 0);
}
for (int i = 1; i <= n; ++i) {
add_len (l[i], r[i], 1, len[i]);
}
int max_cost = 0;
while (spfa (s, t)) {
max_cost += dis[t] * flow[t];
int u = t;
while (u != s) {
e[pre_edge[u] ^ 0].f -= flow[t];
e[pre_edge[u] ^ 1].f += flow[t];
u = pre_node[u];
}
}
cout << max_cost << endl;
}
P3358 最长k可重区间集问题的更多相关文章
- 网络流 P3358 最长k可重区间集问题
P3358 最长k可重区间集问题 题目描述 对于给定的开区间集合 I 和正整数 k,计算开区间集合 I 的最长 k可重区间集的长度. 输入输出格式 输入格式: 的第 1 行有 2 个正整数 n和 k, ...
- (luogu P3358)最长k可重区间集问题 [TPLY]
最长k可重区间集问题 题目链接 https://www.luogu.org/problemnew/show/3358 做法 所有点向下一个点连容量为k费用为0的边 l和r连容量为1费用为区间长度的边 ...
- 洛谷P3358 最长k可重区间集问题(费用流)
题目描述 对于给定的开区间集合 I 和正整数 k,计算开区间集合 I 的最长 k可重区间集的长度. 输入输出格式 输入格式: 的第 1 行有 2 个正整数 n和 k,分别表示开区间的个数和开区间的可重 ...
- 洛谷P3358 最长k可重区间集问题(费用流)
传送门 因为一个zz错误调了一个早上……汇点写错了……spfa也写错了……好吧好像是两个…… 把数轴上的每一个点向它右边的点连一条边,容量为$k$,费用为$0$,然后把每一个区间的左端点向右端点连边, ...
- luogu P3358 最长k可重区间集问题
网络流建图好难,这题居然是网络流(雾,一般分析来说,有限制的情况最大流情况可以拆点通过capacity来限制,比如只使用一次,把一个点拆成入点出点,capacity为1即可,这题是限制最大k重复,可以 ...
- 【Luogu】P3358最长k可重区间集问题(费用流)
题目链接 这题费用瘤,数据貌似还是错的. 把线段抽象抽象拆成两个点,入点表示左端,出点表示右端,连上容量为1费用-长度的边. 不相交线段随便连下,源点向拆出的原点S'连费用为0容量k,然后跑费用流. ...
- 洛谷 P3358 最长k可重区间集问题 【最大费用最大流】
同 poj 3680 https:www.cnblogs.com/lokiii/p/8413139.html #include<iostream> #include<cstdio&g ...
- 最长k可重区间集
P3358 最长k可重区间集问题 P3357 最长k可重线段集问题 P3356 火星探险问题 P4012 深海机器人问题 P3355 骑士共存问题 P2754 [CTSC1999]家园 题目描述 ...
- 「网络流24题」「LuoguP3358」 最长k可重区间集问题(费用流
题目描述 对于给定的开区间集合 I 和正整数 k,计算开区间集合 I 的最长 k可重区间集的长度. 输入输出格式 输入格式: 的第 1 行有 2 个正整数 n和 k,分别表示开区间的个数和开区间的可重 ...
随机推荐
- php2
session //将用户的会话数据存储在服务端,通过 session_start()开启session,通过$_SESSION读写session session_start(); //开启ses ...
- Lodop打印设计矩形重合预览线条变粗
LODOP中的打印设计是辅助进行开发的,实际打印效果应以预览为准,很多效果都是在设计界面显示不出来,或设计和预览界面有差异.例如add_print_text文本的字间距.行间距,旋转,还有允许标点溢出 ...
- Druid简单使用
一.添加maven依赖 <!-- https://mvnrepository.com/artifact/mysql/mysql-connector-java --> <depende ...
- POJ3013-Big Christmas Tree-最短路
题意:给出一个图,每个节点都有权值,每条边也有费用.要求建立一颗树,使总花费最小.树上每连一条边的花费定义为孩子节点权值和×此边费用. 做法:分析可知,最终的答案为所有节点的权值×到根节点的距离.可以 ...
- UOJ268 [清华集训2016] 数据交互 【动态DP】【堆】【树链剖分】【线段树】
题目分析: 不难发现可以用动态DP做. 题目相当于是要我求一条路径,所有与路径有交的链的代价加入进去,要求代价最大. 我们把链的代价分成两个部分:一部分将代价加入$LCA$之中,用$g$数组保存:另一 ...
- Android Studio导入jar包
使用开源框架是,可以直接复制源代码到自己的项目(本人在Android Studio中操作报R程序包不存在),也可以使用jar包,下面记录一下今天使用SmartImageView.jar的过程,不记录S ...
- Django+Vue打造购物网站(三)
商品列表页 通过商品列表页面来学习drf django的view实现商品列表页 在goods目录下新建一个views_base.py文件,用来区分drf的view和Dajngo自带的view的区别 利 ...
- Install KVM Hypervisor on arrch64 Linux Server
Install KVM Hypervisor on arrch64 Linux Server 参考链接: https://wiki.ubuntu.com/ARM64/QEMU https://wiki ...
- 压缩JS,CSS的工具
目标: 压缩项目中的JS,CSS文件. 方法一:使用uglifyjs uglifycss 压缩JS: 1.安装NODEJS.是一个在服务端运行的JS语言.下载地址https://nodejs.org/ ...
- Libre OJ 130、131、132 (树状数组 单点修改、区间查询 -> 区间修改,单点查询 -> 区间修改,区间查询)
这三题均可以用树状数组.分块或线段树来做 #130. 树状数组 1 :单点修改,区间查询 题目链接:https://loj.ac/problem/130 题目描述 这是一道模板题. 给定数列 a[1] ...