[HAOI2010]最长公共子序列(LCS+dp计数)
字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列。令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X的子序列,存在X的一个严格递增下标序列<i0,i1,…,ik-1>,使得对所有的j=0,1,…,k-1,有xij = yj。例如,X=“ABCBDAB”,Y=“BCDB”是X的一个子序列。对给定的两个字符序列,求出他们最长的公共子序列长度,以及最长公共子序列个数。
Solution
这题其实就是让求两个序列的LCS和方案数。
LCS的求法:
dp[i][j]=dp[i-1][j-1]+1(s[i]==s[j])
dp[i][j]=max(dp[i][j-1],dp[i-1][j])(s[i]!=s[j])
这个非常简单,但计数部分需要一些思考。
第一种情况时,我们当前的方案数位不管i位和j位的方案数(因为i和j匹配了),所以要把g[i-1][j]和g[i][j-1]讨论一下。
第二种情况,当dp[i-1][j]==dp[i][j-1]时,我们的g[i-1][j-1]的方案都被算了一次,所以要减掉。
这道题可以加深对LCS的理解。
Code
#include<iostream>
#include<cstdio>
#include<cstring>
#define N 5004
#define mod 100000000
using namespace std;
int dp[][N],n1,n2,now;
long long g[][N];
char s1[N],s2[N];
int main(){
scanf("%s%s",s1+,s2+);
n1=strlen(s1+)-;
n2=strlen(s2+)-;
for(int i=;i<=n1;++i)g[][i]=g[][i]=;
for(int i=;i<=n1;++i){
now^=;
for(int j=;j<=n2;++j){
int f=(s1[i]==s2[j]);
if(f){
dp[now][j]=dp[now^][j-]+f;
g[now][j]=g[now^][j-];
if(dp[now^][j]==dp[now][j])(g[now][j]+=g[now^][j])%=mod;
if(dp[now][j-]==dp[now][j])(g[now][j]+=g[now][j-])%=mod;
}
else{
g[now][j]=;
dp[now][j]=max(dp[now^][j],dp[now][j-]);
if(dp[now^][j]==dp[now][j])(g[now][j]+=g[now^][j])%=mod;
if(dp[now][j-]==dp[now][j])(g[now][j]+=g[now][j-])%=mod;
if(dp[now^][j-]==dp[now][j])(g[now][j]-=g[now^][j-])%=mod;
g[now][j]=(g[now][j]+mod)%mod;
}
}
}
printf("%d\n%d",dp[now][n2],g[now][n2]);
return ;
}
[HAOI2010]最长公共子序列(LCS+dp计数)的更多相关文章
- bzoj 2423: [HAOI2010]最长公共子序列【dp+计数】
设f[i][j]为a序列前i个字符和b序列前j个字符的最长公共子序列,转移很好说就是f[i][j]=max(f[i-1][j],f[i][j-1],f[i-1][j-1]+(a[i]==b[j])) ...
- 【BZOJ2423】[HAOI2010]最长公共子序列 DP
[BZOJ2423][HAOI2010]最长公共子序列 Description 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字 ...
- [BZOJ2423][HAOI2010]最长公共子序列
[BZOJ2423][HAOI2010]最长公共子序列 试题描述 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x ...
- 2021.12.10 P2516 [HAOI2010]最长公共子序列(动态规划+滚动数组)
2021.12.10 P2516 [HAOI2010]最长公共子序列(动态规划+滚动数组) https://www.luogu.com.cn/problem/P2516 题意: 给定字符串 \(S\) ...
- 1006 最长公共子序列Lcs
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为: abcicba abdks ...
- 动态规划之最长公共子序列LCS(Longest Common Subsequence)
一.问题描述 由于最长公共子序列LCS是一个比较经典的问题,主要是采用动态规划(DP)算法去实现,理论方面的讲述也非常详尽,本文重点是程序的实现部分,所以理论方面的解释主要看这篇博客:http://b ...
- 编程算法 - 最长公共子序列(LCS) 代码(C)
最长公共子序列(LCS) 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 给定两个字符串s,t, 求出这两个字符串最长的公共子序列的长度. 字符 ...
- C++版 - Lintcode 77-Longest Common Subsequence最长公共子序列(LCS) - 题解
版权声明:本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C++版 - L ...
- POJ 1458 Common Subsequence(最长公共子序列LCS)
POJ1458 Common Subsequence(最长公共子序列LCS) http://poj.org/problem?id=1458 题意: 给你两个字符串, 要你求出两个字符串的最长公共子序列 ...
- 51Nod 1006:最长公共子序列Lcs(打印LCS)
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...
随机推荐
- HDU 2003 求绝对值
http://acm.hdu.edu.cn/showproblem.php?pid=2003 Problem Description 求实数的绝对值. Input 输入数据有多组,每组占一行,每行 ...
- Docker bridge br0 pipework
Docker Centos7 下建立 Docker 桥接网络 - weifengCorp - 博客园https://www.cnblogs.com/weifeng1463/p/7468497.html ...
- fiddler查看IP地址和请求响应时间
(一)fiddler查看IP地址 1.点击菜单栏rules——customize rules… 2.ctrl+f搜索“static function main” 3.在main函数里加入下面一行代码, ...
- 123. 单词搜索(DFS)
描述 给出一个二维的字母板和一个单词,寻找字母板网格中是否存在这个单词. 单词可以由按顺序的相邻单元的字母组成,其中相邻单元指的是水平或者垂直方向相邻.每个单元中的字母最多只能使用一次. 样例 给出 ...
- 判断浏览器是否支持H5
window.onload = function() { if (!window.applicationCache) { alert("请升级您的浏览器版本,你的浏览器不支持HTML5!&q ...
- 使用 idea 产生错误The server time zone value 'Öйú±ê׼ʱ¼ä' is unrecognized
解决方法 spring.datasource.url=jdbc:mysql://localhost:3306/spring_cache?serverTimezone=GMT%2B8
- KVM+QEMU虚拟化概念
概念: KVM,即Kernel-basedvirtual machine,由redhat开发,是一种开源.免费的虚拟化技术.对企业来说,是一种可选的虚拟化解决方案. 定义:基于Linux内核的虚拟机 ...
- hdu-3294(最长回文子串)
题意:给你一个字符和一个字符串让你求出最长回文子串并且输出来,答案需要根据给出的字符转换一下,就是将给出的字符认定为a,然后依次向后推: 解题思路:manacher模板+一些处理 代码: #inclu ...
- Nginx proxy_protocol协议
L:113
- [BZOJ 2083] [POI 2010] Intelligence test
Description 霸中智力测试机构的一项工作就是按照一定的规则删除一个序列的数字,得到一个确定的数列.Lyx很渴望成为霸中智力测试机构的主管,但是他在这个工作上做的并不好,俗话说熟能生巧,他打算 ...