POJ--1797 Heavy Transportation (最短路)
题目电波: POJ--1797 Heavy Transportation
n点m条边, 求1到n最短边最大的路径的最短边长度
改进dijikstra,dist[i]数组保存源点到i点的最短边最大的路径的最短边长度
#include<iostream>
#include<cstring>
#include<algorithm>
#include<stdio.h>
using namespace std;
#define maxn 100010
#define inf 0x3f3f3f3f
struct ac{
int x,y;
ac(){}
ac(int a,int b){
x=a,y=b;
}
}a[maxn];
struct wa{
int to,va,nex;
}eg[maxn];
int dis[maxn],head[maxn];
bool fa[maxn];
int n,m,tot,len;
void init(){
memset(head,-,sizeof(head));
memset(eg,,sizeof(eg));
memset(fa,,sizeof(fa));
tot=,len=;
}
void add_eg(int u,int v,int va){
eg[tot].to=v;
eg[tot].va=va;
eg[tot].nex=head[u];
head[u]=tot++;
eg[tot].to=u;
eg[tot].va=va;
eg[tot].nex=head[v];
head[v]=tot++;
}
bool xxx(ac q,ac w){
;
;
}
void add(int v){
) return ;
])){
swap(a[v],a[v/]);
add(v/);
}
}
void updata(int v){
>len) return ;
==len){
],a[v])) swap(a[v],a[v*]);
return ;
}
])&&xxx(a[v],a[v*+])) return ;
],a[v*+])){
swap(a[v*],a[v]);
updata(v*);
}else{
swap(a[v*+],a[v]);
updata(v*+);
}
}
void dijstra(){
memset(dis,,sizeof(dis));
memset(fa,,sizeof(fa));
dis[]=inf;
a[++len]=ac(inf,);
while(len){
ac x=a[];
int u=x.y;
swap(a[],a[len--]),updata();
if(fa[u]) continue;
fa[u]=;
;j=eg[j].nex){
int v=eg[j].to;
int va=eg[j].va;
if(dis[v]<min(dis[u],va)){
dis[v]=min(dis[u],va);
a[++len]=ac(dis[v],v);
add(len);
}
}
}
}
int main(){
;
cin>>t;
while(t--){
cin>>n>>m;
init();
;j<m;j++){
int u,v,va;
scanf("%d%d%d",&u,&v,&va);
add_eg(u,v,va);
}
dijstra();
printf("Scenario #%d:\n%d\n\n",zz++,dis[n]);
}
}
POJ--1797 Heavy Transportation (最短路)的更多相关文章
- POJ 1797 Heavy Transportation (最短路)
Heavy Transportation Time Limit: 3000MS Memory Limit: 30000K Total Submissions: 22440 Accepted: ...
- POJ 1797 Heavy Transportation 最短路变形(dijkstra算法)
题目:click here 题意: 有n个城市,m条道路,在每条道路上有一个承载量,现在要求从1到n城市最大承载量,而最大承载量就是从城市1到城市n所有通路上的最大承载量.分析: 其实这个求最大边可以 ...
- poj 1797 Heavy Transportation(最大生成树)
poj 1797 Heavy Transportation Description Background Hugo Heavy is happy. After the breakdown of the ...
- POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径)
POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径) Description Background Hugo ...
- POJ.1797 Heavy Transportation (Dijkstra变形)
POJ.1797 Heavy Transportation (Dijkstra变形) 题意分析 给出n个点,m条边的城市网络,其中 x y d 代表由x到y(或由y到x)的公路所能承受的最大重量为d, ...
- POJ 1797 Heavy Transportation
题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS Memory Limit: 30000K T ...
- POJ 1797 Heavy Transportation SPFA变形
原题链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS Memory Limit: 30000K T ...
- POJ 1797 ——Heavy Transportation——————【最短路、Dijkstra、最短边最大化】
Heavy Transportation Time Limit:3000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64 ...
- POJ 1797 Heavy Transportation(最大生成树/最短路变形)
传送门 Heavy Transportation Time Limit: 3000MS Memory Limit: 30000K Total Submissions: 31882 Accept ...
- POJ 1797 Heavy Transportation (Dijkstra变形)
F - Heavy Transportation Time Limit:3000MS Memory Limit:30000KB 64bit IO Format:%I64d & ...
随机推荐
- PHP中对象的深拷贝与浅拷贝
先说一下深拷贝和浅拷贝通俗理解 深拷贝:赋值时值完全复制,完全的copy,对其中一个作出改变,不会影响另一个 浅拷贝:赋值时,引用赋值,相当于取了一个别名.对其中一个修改,会影响另一个 PHP中, = ...
- [转帖]2015年时微软Win3.1崩溃迫使巴黎奥利机场短暂关闭
https://www.ithome.com/html/it/188796.htm IT之家讯 2015年11月14日消息,上周法国巴黎奥利机场因为微软的Windows 3.1系统出现故障不得不迫使所 ...
- Oracle增删改查sql语句
--创建表空间 create tablespace waterboss datafile 'd:\waterboss.dbf' size 100m autoextend on next 10m --创 ...
- Python模拟wc命令(软件测试第二次作业)
Python实现字符,单词,行,代码行,空行及可视化 Gitee项目地址:https://gitee.com/biubiubiuLYQ/word_and_character_statistics 一. ...
- spring 启动脚本分析
参考:JVM 参数使用总结 参考:java -Xms -Xmx -XX:PermSize -XX:MaxPermSize 参考:JVM调优总结 -Xms -Xmx -Xmn -Xss 参考:JAVA ...
- 莫烦scikit-learn学习自修第六天【特征值矩阵标准化】
1.代码实战 #!/usr/bin/env python #!_*_coding:UTF-8 _*_ import numpy as np from sklearn import preprocess ...
- 解决spring多线程不共享事务的问题
在一个事务中使用多线程操作数据库时,若同时存在对数据库的读写操作,可能出现数据读取的不准确,因为多线程将不会共享同一个事务(也就是说子线程和主线程的事务不一样),为了解决这个问题,可以使用spring ...
- Javassist之使用字节码在运行时生成新的类 01
介绍 Javassist是一个开源的分析.编辑和创建Java字节码的类库.是由东京工业大学的数学和计算机科学系的 Shigeru Chiba (千叶 滋)所创建的.它已加入了开放源代码JBoss 应用 ...
- NPOI 上传Excel功能(三)
4.验证Excel并上传 using DC.BE.Business.SAS; using DC.BE.Business.SYS; using DC.BE.Entity.SAS; using DC.BE ...
- How to remove tag on Github
git tag -d 22 git push origin :refs/tags/22