题目分析:

这种题目标题写莫比乌斯反演会不会显得太恐怖了,那就容斥算了。

gcd不为1的肯定可以开根。所以把根式结果算出来就行了。

辣鸡题目卡我精度。

代码:

 #include<bits/stdc++.h>
using namespace std; const long long LMAX = ; long long n;
int mu[]; void init(){
for(int i=;i<=;i++){
int p = i;
mu[i] = -;
for(int j=;j*j<=p;j++){
int cnt = ; while(p%j == ) p/=j,cnt++;
if(cnt != && cnt != ) mu[i] = ;
else if(cnt == ) mu[i]*=-;
}
if(p != ) mu[i]*=-;
}
} long long fast_pow(int now,int pw){
long long ans = ,dt = now;
int bit = ;
while(bit <= pw){
if(bit & pw){
if(ans < LMAX/dt) ans *= dt;
else ans = LMAX;
}
if(dt < LMAX/dt) dt *= dt;
else dt = LMAX;
bit<<=;
}
return ans;
} void work(){
long long ans = ;
for(int i=;i<=;i++){
if(mu[i] == ) continue;
int z = pow((long double)n,1.0/(long double)i);
if(z == ) break;
if(fast_pow(z,i) > n) z--;
if(fast_pow(z+,i) <= n) z++;
z--; ans += z*mu[i];
}
n -= ans;n--;
printf("%I64d\n",n);
} int main(){
int Tmp; scanf("%d",&Tmp);
init();
while(Tmp--){
scanf("%I64d",&n);
work();
}
return ;
}

Codeforces1036F Relatively Prime Powers 【容斥原理】的更多相关文章

  1. Relatively Prime Powers CodeForces - 1036F (莫比乌斯函数容斥)

    Relatively Prime Powers CodeForces - 1036F Consider some positive integer xx. Its prime factorizatio ...

  2. F. Relatively Prime Powers (求([2,n],内不是次方的数量)

    题目:经过提炼后, 题目的意思就是问[2,n] 内,不是次方数的数量 ,: 思路: 答案就是 原理是利用容斥,注意n开i次根是向下取整(这题巨卡精度) 这是大神的思路 ,, 我还没有理解, 先放着,等 ...

  3. Educational Codeforces Round 50 (Rated for Div. 2) F - Relatively Prime Powers(数学+容斥)

    题目链接:http://codeforces.com/contest/1036/problem/F 题意: 题解:求在[2,n]中,x != a ^ b(b >= 2 即为gcd)的个数,那么实 ...

  4. Educational Codeforces Round 50 (Rated for Div. 2)F. Relatively Prime Powers

    实际上就是求在[2,n]中,x != a^b的个数,那么实际上就是要求x=a^b的个数,然后用总数减掉就好了. 直接开方求和显然会有重复的数.容斥搞一下,但实际上是要用到莫比乌斯函数的,另外要注意减掉 ...

  5. 容斥原理 求M以内有多少个跟N是互质的

    开始系统的学习容斥原理!通常我们求1-n中与n互质的数的个数都是用欧拉函数! 但如果n比较大或者是求1-m中与n互质的数的个数等等问题,要想时间效率高的话还是用容斥原理!   本题是求[a,b]中与n ...

  6. Educational Codeforces Round 50

    1036A - Function Height    20180907 \(ans=\left \lceil \frac{k}{n} \right \rceil\) #include<bits/ ...

  7. 【线性筛】【筛法求素数】【素数判定】URAL - 2102 - Michael and Cryptography

    暴力搞肯定不行,因此我们从小到大枚举素数,用n去试除,每次除尽,如果已经超过20,肯定是no.如果当前枚举到的素数的(20-已经找到的质因子个数)次方>剩下的n,肯定也是no.再加一个关键的优化 ...

  8. Ural2102:Michael and Cryptography(数论&素数)

    The hacker Michael develops breakthrough password manager, which is called KEK (Keeper of Encrypted ...

  9. hdu4059 The Boss on Mars(差分+容斥原理)

    题意: 求小于n (1 ≤ n ≤ 10^8)的数中,与n互质的数的四次方和. 知识点: 差分: 一阶差分: 设  则    为一阶差分. 二阶差分: n阶差分:     且可推出    性质: 1. ...

随机推荐

  1. Arduino通过MAX9814实现录音

    如果通过Arduino进行录音不是单纯地接一个驻极电容MIC就可以的,因为自然界中的声音非常复杂,波形极其复杂,通常我们采用的是脉冲代码调制编码.即PCM编码.PCM通过抽样.量化.编码三个步骤将连续 ...

  2. Wechart 饼图

    预览 Preview | Usage Source | Pie Source | Tutorial Wechart by Cax Cax 众所周知 Cax 既能开发游戏.又能开发图表.本文将从饼图开始 ...

  3. 二维数组中的查找问题--剑指offer面试题3

    题目:在一个二维数组中,对每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. // 二维数组中的查找 ...

  4. Python魔法函数

    python中定义的以__开头和结尾的的函数.可以随意定制类的特性.魔法函数定义好之后一般不需要我们自己去调用,而是解释器会自动帮我们调用. __getitem__(self, item) 将类编程一 ...

  5. NET操作RabbitMQ组件EasyNetQ

    NET操作RabbitMQ组件EasyNetQ使用中文简版文档. 本文出自EasyNetQ官方文档,内容为自己理解加翻译.文档地址:https://github.com/EasyNetQ/EasyNe ...

  6. 集大软件工程15级结对编程week1

    集大软件工程15级结对编程week1 0. 团队成员 姓名 学号 博客园首页 码云主页 孙志威 20152112307 Agt Eurekaaa 孙慧君 201521123098 野原泽君 野原泽君 ...

  7. MySQL分页时统计总记录行数并使用limit返回固定数目的记录

    需求很简单:假设有一个user表,表中实际上有10000条数据,但是我不知道有多少条,我要从数据库中每次取20条数据显示,那么怎么完成呢? 方案一: 首先执行一个 select count(*) as ...

  8. 【学习总结】Git学习-参考廖雪峰老师教程五-远程仓库

    学习总结之Git学习-总 目录: 一.Git简介 二.安装Git 三.创建版本库 四.时光机穿梭 五.远程仓库 六.分支管理 七.标签管理 八.使用GitHub 九.使用码云 十.自定义Git 期末总 ...

  9. MySQL之数据导入导出

    日常开发中,经常会涉及到对于数据库中数据的导入与导出操作,格式也有很多: TXT,CSV,XLS,SQL等格式,所以,在此总结一下,省的总是百度查询. 一 导出 1) 常用的方式就是使用现成的工具例如 ...

  10. 小程序wepy.js框架总结

    wepy.js借鉴了Vue的语法风格和功能特性,对官方提供的框架进行了封装,更贴近于MVVM架构模式,让开发者更加容易上手,增加开发效率.(脏数据处理--是否有标识.是否有响应) 前端开发的对组件化开 ...