贝叶斯定理推导(Bayes' Theorem Induction)
这里用Venn diagram来不严谨地推导一下贝叶斯定理。
假设A和B为两个不相互独立的事件。
交集(intersection):
上图红色部分即为事件A和事件B的交集。
并集(union):
由Venn diagram可以看出,在事件B已经发生的情况下,事件A发生的概率为事件A和事件B的交集除以事件B:
同理,在事件A已经发生的情况下,事件B发生的概率为事件A和事件B的交集除以事件A:
注:表示 A,B 事件同时发生的概率,如果 A 和 B 是相互独立的两个事件,那么:
。
由上面的公式可以得到:
然后,我们就可以得到贝叶斯定理:
其中: 是先验概率(prior probability),
是条件概率(conditional probability),
是后验概率(posterior probability)。
是联合概率(joint probability),通常写成P(A,B)。
注:条件概率 P(B|A) ---> 给定事件A,事件B发生的概率(probability of event B occuring given event A)。
又根据Law of Total Probability:
注:表示事件A不发生的概率。
这个可以用probability tree来帮助理解一下:
因此,贝叶斯定理可以扩展为:
贝叶斯定理通常用于由已知的先验概率和条件概率,推算出后验概率。
举一个简单的例子:某地平时下雨的概率是0.3,小明平时带伞的概率是0.4,小明下雨天带伞的概率是0.8。某一天小明带了伞,请问这天下雨的概率是多少?
解答:也就是需要求P(下雨|小明带伞),把上面的数字代入公式即:
这个例子的先验概率是平时下雨的概率0.3,由于我们已知小明带了伞这一信息,因此我们可以估算出后验概率,也就是当天下雨的概率是0.6。
先验概率是怎么得来的呢?通常是人们的经验总结或者说是估算,比如说某地一个月里面下了3天雨,我们就估算某地平时下雨的概率是0.3。
如果条件不止一个呢?让我们把上面的例子改一下:某地平时下雨的概率是0.3,平时刮风的概率是0.4,下雨天刮风的概率是0.6,小明平时带伞的概率是0.4,小明下雨天带伞的概率是0.8。某一天小明带了伞,且当天在刮风,请问这天下雨的概率是多少?
解答:也就是需要求P(下雨|小明带伞,刮风),把上面的数字代入公式即:
注:这里假设小明带伞和刮风之间没有关联,两条件互不影响(条件独立假设),因此属于朴素贝叶斯的范畴。
长久以来,人们信奉的是频率主义。比如把一枚硬币抛10000次,有5000次正面朝上,5000次反面朝上,那么我们就可以得知抛这枚硬币,其正面朝上的概率是0.5。通常,我们需要某一事件发生足够多的次数,我们才可以观察到它的规律。
在现实生活中,很多事件并不会在相对较短的时间内多次发生。这时候,贝叶斯定理就发挥作用了。比如说我们想知道刮风天下雨的概率是多少,我们不用等10000个刮风天,看其中有几天下了雨。我们只需要估算出下雨天会刮风的概率,平时下雨的概率,平时刮风的概率,就可以估算出刮风天会下雨的概率是多少了。先验概率估算得不准确并没有关系,人们可以通过未来事件的发生情况,不断对后验概率做出调整。
贝叶斯定理推导(Bayes' Theorem Induction)的更多相关文章
- 【概率论】2-3:贝叶斯定理(Bayes' Theorem)
title: [概率论]2-3:贝叶斯定理(Bayes' Theorem) categories: Mathematic Probability keywords: Bayes' Theorem 贝叶 ...
- (main)贝叶斯统计 | 贝叶斯定理 | 贝叶斯推断 | 贝叶斯线性回归 | Bayes' Theorem
2019年08月31日更新 看了一篇发在NM上的文章才又明白了贝叶斯方法的重要性和普适性,结合目前最火的DL,会有意想不到的结果. 目前一些最直觉性的理解: 概率的核心就是可能性空间一定,三体世界不会 ...
- 读Bayes' Theorem
Bayes' Theorem定理的原理说明,三个简单的例子来说明用法及一些练习. Bayes' Theorem就是概率问题,论文相对比较好理解,也不必做什么笔记.
- Bayes' theorem (贝叶斯定理)
前言 AI时代的到来一下子让人感觉到数学知识有些捉襟见肘,为了不被这个时代淘汰,我们需要不断的学习再学习.其中最常见的就是贝叶斯定理,这个定理最早由托马斯·贝叶斯提出. 贝叶斯方法的诞生源于他生前为解 ...
- Naive Bayes Theorem and Application - Theorem
Naive Bayes Theorm And Application - Theorem Naive Bayes model: 1. Naive Bayes model 2. model: discr ...
- PRML读书笔记——机器学习导论
什么是模式识别(Pattern Recognition)? 按照Bishop的定义,模式识别就是用机器学习的算法从数据中挖掘出有用的pattern. 人们很早就开始学习如何从大量的数据中发现隐藏在背后 ...
- ML(3): 贝叶斯方法
对于分类问题,我们每个人每天都在执行分类操作,只是我们没有意识到罢了.例如,当你看到一个陌生人,你的脑子下意识判断TA是男是女:你可能经常会走在路上对身旁的朋友说“这个人一看就很有钱.那边有个非主流” ...
- 如何通俗理解贝叶斯推断与beta分布?
有一枚硬币(不知道它是否公平),假如抛了三次,三次都是“花”: 能够说明它两面都是“花”吗? 1 贝叶斯推断 按照传统的算法,抛了三次得到三次“花”,那么“花”的概率应该是: 但是抛三次实在太少了,完 ...
- Bayesian Statistics for Genetics | 贝叶斯与遗传学
Common sense reduced to computation - Pierre-Simon, marquis de Laplace (1749–1827) Inventor of Bayes ...
随机推荐
- amd,cmd规范
AMD 和 CMD 的区别有哪些? AMD规范与CMD规范的区别 回顾:前端模块化和AMD.CMD规范(全) 浅析JS模块规范:AMD,CMD,CommonJS 理解AMD ,CMD,CommonJS ...
- poj2104 主席树裸题
空间大小:n*lgn 复杂度:建树n*lgn 查询lgn #include <cstdio> #include <iostream> #include <algorit ...
- nginx的The page you are looking for is temporarily unavailable错误解决办法
访问网站时出现如下错误,如下图: 检查php fastcgi进程数,如下图: 输出0则表示fastcgi进程数够大,修改scgi_params文件,如下图: 然后重启php-fpm和nginx,重新访 ...
- Tomcat connecttimeout sessiontimeout
IIS中的会话超时和连接超时之间有什么区别? | Adept Technologies Inc.https://www.adepttech.com/blog/?p=825 IIS中的会话超时和连接超时 ...
- 【学亮IT手记】jQuery callback方法实例
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <script sr ...
- C# Note18: 使用wpf制作about dialog(关于对话框)
前言 基本上任何software或application都会在help菜单中,有着一个关于对话框,介绍产品的版权.版本等信息,还有就是对第三方的引用(add author credits). 首先,看 ...
- Hbase 架构体系
有2个节点进程,一个是master,另一是regionserver.
- python爬虫之pandas
一.简介: Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模 ...
- zabbix自定义模板——监控TCP连接状态
TCP十二种连接状态说明 可以使用man netstat查看 LISTEN - 侦听来自远方TCP端口的连接请求: SYN-SENT -在发送连接请求后等待匹配的连接请求: SYN-RECEIVED ...
- 在Hmtl页面中只让其中单独的一个div隐藏滚动条但是仍可滚动浏览下边的内容
<style> .box ::-webkit-scrollbar {width: 0px;} </style> <div class="box"> ...