显然这是一道dfs简单题

或许匹配也能做

然而用了dancing links

显然这也是一道模板题

好的吧

调了一上午 终于弄好了模板

Easy Finding
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 19052   Accepted: 5273

Description

Given a M×N matrix AAij ∈ {0, 1} (0 ≤ i < M, 0 ≤ j < N), could you find some rows that let every cloumn contains and only contains one 1.

Input

There are multiple cases ended by EOF. Test case up to 500.The first line of input is MN (M ≤ 16, N ≤ 300). The next M lines every line contains N integers separated by space.

Output

For each test case, if you could find it output "Yes, I found it", otherwise output "It is impossible" per line.

Sample Input

3 3
0 1 0
0 0 1
1 0 0
4 4
0 0 0 1
1 0 0 0
1 1 0 1
0 1 0 0

Sample Output

Yes, I found it
It is impossible

Source

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define rb(a) scanf("%lf", &a)
#define rf(a) scanf("%f", &a)
#define pd(a) printf("%d\n", a)
#define plld(a) printf("%lld\n", a)
#define pc(a) printf("%c\n", a)
#define ps(a) printf("%s\n", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff; int S[maxn], head[maxn], vis[maxn];
int U[maxn], D[maxn], L[maxn], R[maxn];
int C[maxn], X[maxn];
int n, m, ans, ret; void init()
{
for(int i = ; i <= m; i++)
D[i] = i, U[i] = i, R[i] = i + , L[i] = i - ;
L[] = m, R[m] = ;
mem(S, ), mem(head, -);
ans = m + ;
} void delc(int c)
{
L[R[c]] = L[c], R[L[c]] = R[c];
for(int i = D[c]; i != c; i = D[i])
for(int j = R[i]; j != i; j = R[j])
U[D[j]] = U[j], D[U[j]] = D[j], S[C[j]]--; } void resc(int c)
{
for(int i = U[c]; i != c; i = U[i])
for(int j = L[i]; j != i; j = L[j])
U[D[j]] = j, D[U[j]] = j, S[C[j]]++;
L[R[c]] = c, R[L[c]] = c;
} void add(int r, int c)
{
ans++, S[c]++, C[ans] = c, X[ans] = r;
D[ans] = D[c];
U[ans] = c;
U[D[c]] = ans;
D[c] = ans;
if(head[r] < ) head[r] = L[ans] = R[ans] = ans;
else L[ans] = head[r], R[ans] = R[head[r]],L[R[head[r]]] = ans, R[head[r]] = ans;
} bool dfs(int sh)
{
if(!R[])
{
ret = sh;
return true;
}
int c = R[];
delc(c);
for(int i = D[c]; i != c; i = D[i])
{
vis[sh] = i;
for(int j = R[i]; j != i; j = R[j])
delc(C[j]);
if(dfs(sh + )) return true;
for(int j = L[i]; j != i; j = L[j])
resc(C[j]);
}
resc(c);
return false;
} int main()
{
while(scanf("%d%d", &n, &m) != EOF)
{
init();
int tmp;
for(int i = ; i <= n; i++)
for(int j = ; j <= m; j++)
{
rd(tmp);
if(tmp) add(i, j);
}
if(dfs())
printf("Yes, I found it\n");
else
printf("It is impossible\n"); } return ;
}

Easy Finding POJ - 3740 (DLX)的更多相关文章

  1. Sudoku POJ - 2676(DLX)

    Sudoku Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 25356   Accepted: 11849   Specia ...

  2. 舞蹈链(DLX)

    舞蹈链(DLX) Tags:搜索 作业部落 评论地址 一.概述 特别特别感谢这位童鞋His blog 舞蹈链是一种优美的搜索,就像下面这样跳舞- 舞蹈链用于解决精确覆盖或者重复覆盖的问题 你可以想象成 ...

  3. POJ 3076 / ZOJ 3122 Sudoku(DLX)

    Description A Sudoku grid is a 16x16 grid of cells grouped in sixteen 4x4 squares, where some cells ...

  4. POJ_3740 Easy Finding ——精确覆盖问题,DLX模版

    Easy Finding Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18790   Accepted: 5184 Des ...

  5. HDU 4069 Squiggly Sudoku(DLX)(The 36th ACM/ICPC Asia Regional Fuzhou Site —— Online Contest)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4069 Problem Description Today we play a squiggly sud ...

  6. POJ题目(转)

    http://www.cnblogs.com/kuangbin/archive/2011/07/29/2120667.html 初期:一.基本算法:     (1)枚举. (poj1753,poj29 ...

  7. NOIP 2009 靶形数独(DLX)

    小城和小华都是热爱数学的好学生,最近,他们不约而同地迷上了数独游戏,好胜的他们想用数独来一比高低.但普通的数独对他们来说都过于简单了,于是他们向Z 博士请教,Z 博士拿出了他最近发明的“靶形数独”,作 ...

  8. Repeater POJ - 3768 (分形)

    Repeater POJ - 3768 Harmony is indispensible in our daily life and no one can live without it----may ...

  9. 【转】 Easy RadControl 之 RadGridView(Silverlight)

    1.不显示第1列即列指示器(Row Indicators) 在 telerik:RadGridView中设置属性   RowIndicatorVisibility="Collapsed&qu ...

随机推荐

  1. Python全栈开发之路 【第五篇】:Python基础之函数进阶(装饰器、生成器&迭代器)

    本节内容 一.名称空间 又名name space,就是存放名字的地方.举例说明,若变量x=1,1存放于内存中,那名字x存放在哪里呢?名称空间正是存放名字x与1绑定关系的地方. 名称空间共3种,分别如下 ...

  2. 百度软件开发实习生c++方向面经(一面)

    百度2017实习生软件开发(cpp方向) 首先说一下岗位.分为软件开发,开发测试,前端,机器学习数据挖掘,移动开发,据我观察,报的人数来看,软件开发最多,移动开发和开发测试较少.百度前台还准备了吃的喝 ...

  3. echarts各个配置项详细说明总结

    https://blog.csdn.net/sinat_34492035/article/details/70258557 https://blog.csdn.net/qq_34908167/arti ...

  4. Dubbo负载均衡与集群容错机制

    1  Dubbo简介 Dubbo是一款高性能.轻量级的开源Java RPC框架,它提供了三大核心能力:面向接口的远程方法调用,智能容错和负载均衡,以及服务自动注册和发现. 作为一个轻量级RPC框架,D ...

  5. Masonry练习详解

    添加约束的方式: 1.通过使用NSLayoutConstraints添加约束到约束数组中,之前必须设置translatesAutoresizingMaskIntoConstraints = NO,即取 ...

  6. 【转】RCP中org.eclipse.core.runtime.CoreException

    org.eclipse.core.runtime.CoreException: Plug-in TRAIN was unable to load class train.Application. 利用 ...

  7. MySQL :: Fatal error: Can&#039;t change to run as user &#039;mysql&#039;. Please check that the user exists!

    Fatal error: Can't change to run as user 'mysql'. Please check that the user exists! MySQL :: Fatal ...

  8. Java 中的String、StringBuilder与StringBuffer的区别联系(转载)

    1 String 基础 想要了解一个类,最好的办法就是看这个类的源代码,String类源代码如下: public final class String implements java.io.Seria ...

  9. 【学亮开讲】Oracle存储过程教学笔记(二)20181116

    --带出参的存储过程的创建和调用 create or replace procedure pro_owners_add1 ( v_name varchar2,--名称 v_addressid numb ...

  10. Angular 过滤器

    <!DOCTYPE html><html ng-app="myApp"><head lang="en"> <meta ...