条件概率和链式法则 conditional probability & chain rule
顾名思义, 条件概率指的是某个事件在给定其他条件时发生的概率, 这个非常符合人的认知:我们通常就是在已知一定的信息(条件)情况下, 去估计某个事件可能发生的概率. 概率论中,用 | 表示条件, 条件概率可以通过下式计算得到
P(Y=y|X=x)=P(Y=y,X=x)P(X=x)
P(Y=y|X=x)=P(Y=y,X=x)P(X=x)
, 即 在 x 发生的条件下 y 发生的概率 等于 x,y 同时发生的联合概率 除以 x自身的概率. 注意, 必须满足 P(x)>0P(x)>0, 否则对于永远不会发生的事情讨论条件概率无意义.
基于条件概率, 任意多维随机变量的联合分布都可以写成其中任意一个随机变量的条件概率相乘的形式
P(x(1),...,x(n))=P(x(1))∏i=2nP(x(i)|x(1),...,x(i−1))
P(x(1),...,x(n))=P(x(1))∏i=2nP(x(i)|x(1),...,x(i−1))
,
具体而言, 对于一个三元分布 :
P(a,b,c)=P(a|b,c)p(b,c)=P(a|b,c)P(b|c)P(c)
P(a,b,c)=P(a|b,c)p(b,c)=P(a|b,c)P(b|c)P(c)
, 这样通常很难直接得到的 P(a,b,c)P(a,b,c) 就分解为以下三个简单的情形乘积的形式:
P(c):cP(c):c 发生的概率, 通常已知.
P(b|c):cP(b|c):c 发生的条件下, 观察到 bb 的概率, 通常从数据中挖出.
p(a|b,c):b,cp(a|b,c):b,c 同时发生的条件下, 观察到 aa 的概率, 通常从数据中挖出.
独立性和条件独立性 independent & conditionally independent
由上面的 joint probability, 满足下面的条件
∀x∈X,y∈Y,p(X=x,Y=y)=p(X=x)p(Y=y)
∀x∈X,y∈Y,p(X=x,Y=y)=p(X=x)p(Y=y)
, 就表明连个随机变量之间是没有相互影响的, 因此, 他们是 相互独立的(independent). 简记为 X⊥YX⊥Y, 其实也真的很像垂直正交的关系.
如果 X,YX,Y 在给定条件 Z=zZ=z 时满足 independent, 即
∀x∈X,y∈Y,z∈Z,p(X=x,Y=y|Z=z)=p(X=x|Z=z)p(Y=y|Z=z)
∀x∈X,y∈Y,z∈Z,p(X=x,Y=y|Z=z)=p(X=x|Z=z)p(Y=y|Z=z)
, 我们就说 随机变量 XX 和 YY 在给定随机变量 ZZ时是条件独立的(conditionally independent), 简记为 X⊥Y|ZX⊥Y|Z, 几何上可以看做给定基底ZZ时, X,YX,Y是正交的.
————————————————
版权声明:本文为CSDN博主「鹅城惊喜师爷」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/baishuo8/article/details/82313151
条件概率和链式法则 conditional probability & chain rule的更多相关文章
- 【概率论】2-1:条件概率(Conditional Probability)
title: [概率论]2-1:条件概率(Conditional Probability) categories: Mathematic Probability keywords: Condition ...
- chain rule 到 Markov chain
1. 联合概率(joint distribution)的链式法则 基于链式法则的 explicit formula: p(x1:n)===p(x)p(x1)∏i=2np(xi|x1,-,xi−1)∏i ...
- Bayes’s formula for Conditional Probability
Conditional Probability Example:In a batch, there are 80% C programmers, and 40% are Java and C prog ...
- caffe源码 理解链式法则
网络结构 首先我们抽象理解下一个网络结构是怎样的,如下图所示 F1,F2,F3为某种函数 input为输入数据,output为输出数据 X1,X2为为中间的层的输入输出数据 总体来说有以下关系 X1 ...
- 学习AI之NLP后对预训练语言模型——心得体会总结
一.学习NLP背景介绍: 从2019年4月份开始跟着华为云ModelArts实战营同学们一起进行了6期关于图像深度学习的学习,初步了解了关于图像标注.图像分类.物体检测,图像都目标物体检测等 ...
- Nature重磅:Hinton、LeCun、Bengio三巨头权威科普深度学习
http://wallstreetcn.com/node/248376 借助深度学习,多处理层组成的计算模型可通过多层抽象来学习数据表征( representations).这些方法显著推动了语音识别 ...
- Entropy, relative entropy and mutual information
目录 Entropy Joint Entropy Conditional Entropy Chain rule Mutual Information Relative Entropy Chain Ru ...
- 学习笔记DL008:概率论,随机变量,概率分布,边缘概率,条件概率,期望、方差、协方差
概率和信息论. 概率论,表示不确定性声明数学框架.提供量化不确定性方法,提供导出新不确定性声明(statement)公理.人工智能领域,概率法则,AI系统推理,设计算法计算概率论导出表达式.概率和统计 ...
- [PGM] Bayes Network and Conditional Independence
2 - 1 - Semantics & Factorization 2 - 2 - Reasoning Patterns 2 - 3 - Flow of Probabilistic Influ ...
随机推荐
- Õ() Big-O-notation
Õ只是大\(O\)表示法的变种,忽略了对数因子: \[f(n) \in \tilde O(h(n))\] \[=> \exists k : f(n) \in O \!\left( h(n)\lo ...
- 180908 input
input while if # -*- coding:utf-8 -*- flag = 0 while flag == 0 : username = input('请输入用户名:\n') passw ...
- MCMC蒙特卡罗马尔科夫模型
https://www.cnblogs.com/pinard/p/6645766.html https://blog.csdn.net/saltriver/article/details/521949 ...
- Oracle substr() 字符截取函数
1.substr函数格式 (俗称:字符截取函数) 格式1: substr(string string, int a, int b); 格式2:substr(string string, int a ...
- 2019/7/22----tomacat配置web页面访问路径
tomcat----conf-----Catalina----localhost----cms.xml,cms.xml文件中添加: <?xml version='1.0' encoding=&q ...
- Pycharm使用技巧:Split Vertically/Horizontally(垂直/水平拆分窗口)
Split Vertically或者Split Horizontally可以把当前编辑窗口垂直或者水平拆分成两个. 使用: 在编辑窗口中打开你要展示的两个文件(如图中的 "郭靖" ...
- 《挑战30天C++入门极限》C++类的继承与多重继承的访问控制
C++类的继承与多重继承的访问控制 在前面的练习中我们一直在使用public的继承方式,即共有继承方式,对于protected和private继承方式,即保护继承与私有继承方式我们并没有讨论. ...
- Leetcode44. 通配符匹配(动态规划)
44. 通配符匹配 动态规划 \(f_{i,j}\)为\(s\)匹配\(i\),\(t\)匹配\(j\)是否成功 贪心 相比之下这个思维性更强 考虑两个*,两个星号间的过渡,只需要过渡完到第二个星号, ...
- 2019年7月第一周总结-RabbitMQ总结
这一周主要是对RabbitMQ做了一下学习. 快速阅读 RabbitMq的介绍以及环境安装配置,以及RabbitMq的六种应用 .单生产者和消费者, 单生产者多消费者,消息的发布订阅,消息类型Echa ...
- 【JVM】虚拟机类加载机制
什么是类加载 虚拟机把描述类的数据从Class文件加载到内存,并对数据进行校验.转换解析和初始化,最终形成可以被虚拟机直接使用的Java类型,这就是虚拟机的类加载机制. <[JVM]类文件结构& ...