条件概率和链式法则 conditional probability & chain rule
顾名思义, 条件概率指的是某个事件在给定其他条件时发生的概率, 这个非常符合人的认知:我们通常就是在已知一定的信息(条件)情况下, 去估计某个事件可能发生的概率. 概率论中,用 | 表示条件, 条件概率可以通过下式计算得到
P(Y=y|X=x)=P(Y=y,X=x)P(X=x)
P(Y=y|X=x)=P(Y=y,X=x)P(X=x)
, 即 在 x 发生的条件下 y 发生的概率 等于 x,y 同时发生的联合概率 除以 x自身的概率. 注意, 必须满足 P(x)>0P(x)>0, 否则对于永远不会发生的事情讨论条件概率无意义.
基于条件概率, 任意多维随机变量的联合分布都可以写成其中任意一个随机变量的条件概率相乘的形式
P(x(1),...,x(n))=P(x(1))∏i=2nP(x(i)|x(1),...,x(i−1))
P(x(1),...,x(n))=P(x(1))∏i=2nP(x(i)|x(1),...,x(i−1))
,
具体而言, 对于一个三元分布 :
P(a,b,c)=P(a|b,c)p(b,c)=P(a|b,c)P(b|c)P(c)
P(a,b,c)=P(a|b,c)p(b,c)=P(a|b,c)P(b|c)P(c)
, 这样通常很难直接得到的 P(a,b,c)P(a,b,c) 就分解为以下三个简单的情形乘积的形式:
P(c):cP(c):c 发生的概率, 通常已知.
P(b|c):cP(b|c):c 发生的条件下, 观察到 bb 的概率, 通常从数据中挖出.
p(a|b,c):b,cp(a|b,c):b,c 同时发生的条件下, 观察到 aa 的概率, 通常从数据中挖出.
独立性和条件独立性 independent & conditionally independent
由上面的 joint probability, 满足下面的条件
∀x∈X,y∈Y,p(X=x,Y=y)=p(X=x)p(Y=y)
∀x∈X,y∈Y,p(X=x,Y=y)=p(X=x)p(Y=y)
, 就表明连个随机变量之间是没有相互影响的, 因此, 他们是 相互独立的(independent). 简记为 X⊥YX⊥Y, 其实也真的很像垂直正交的关系.
如果 X,YX,Y 在给定条件 Z=zZ=z 时满足 independent, 即
∀x∈X,y∈Y,z∈Z,p(X=x,Y=y|Z=z)=p(X=x|Z=z)p(Y=y|Z=z)
∀x∈X,y∈Y,z∈Z,p(X=x,Y=y|Z=z)=p(X=x|Z=z)p(Y=y|Z=z)
, 我们就说 随机变量 XX 和 YY 在给定随机变量 ZZ时是条件独立的(conditionally independent), 简记为 X⊥Y|ZX⊥Y|Z, 几何上可以看做给定基底ZZ时, X,YX,Y是正交的.
————————————————
版权声明:本文为CSDN博主「鹅城惊喜师爷」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/baishuo8/article/details/82313151
条件概率和链式法则 conditional probability & chain rule的更多相关文章
- 【概率论】2-1:条件概率(Conditional Probability)
title: [概率论]2-1:条件概率(Conditional Probability) categories: Mathematic Probability keywords: Condition ...
- chain rule 到 Markov chain
1. 联合概率(joint distribution)的链式法则 基于链式法则的 explicit formula: p(x1:n)===p(x)p(x1)∏i=2np(xi|x1,-,xi−1)∏i ...
- Bayes’s formula for Conditional Probability
Conditional Probability Example:In a batch, there are 80% C programmers, and 40% are Java and C prog ...
- caffe源码 理解链式法则
网络结构 首先我们抽象理解下一个网络结构是怎样的,如下图所示 F1,F2,F3为某种函数 input为输入数据,output为输出数据 X1,X2为为中间的层的输入输出数据 总体来说有以下关系 X1 ...
- 学习AI之NLP后对预训练语言模型——心得体会总结
一.学习NLP背景介绍: 从2019年4月份开始跟着华为云ModelArts实战营同学们一起进行了6期关于图像深度学习的学习,初步了解了关于图像标注.图像分类.物体检测,图像都目标物体检测等 ...
- Nature重磅:Hinton、LeCun、Bengio三巨头权威科普深度学习
http://wallstreetcn.com/node/248376 借助深度学习,多处理层组成的计算模型可通过多层抽象来学习数据表征( representations).这些方法显著推动了语音识别 ...
- Entropy, relative entropy and mutual information
目录 Entropy Joint Entropy Conditional Entropy Chain rule Mutual Information Relative Entropy Chain Ru ...
- 学习笔记DL008:概率论,随机变量,概率分布,边缘概率,条件概率,期望、方差、协方差
概率和信息论. 概率论,表示不确定性声明数学框架.提供量化不确定性方法,提供导出新不确定性声明(statement)公理.人工智能领域,概率法则,AI系统推理,设计算法计算概率论导出表达式.概率和统计 ...
- [PGM] Bayes Network and Conditional Independence
2 - 1 - Semantics & Factorization 2 - 2 - Reasoning Patterns 2 - 3 - Flow of Probabilistic Influ ...
随机推荐
- 既然 transform 不适用于某些内联元素,那咱们就把这些元素变成 inline-block 或 block 就行了。
既然 transform 不适用于某些内联元素,那咱们就把这些元素变成 inline-block 或 block 就行了.
- SIGAI机器学习第二十二集 AdaBoost算法3
讲授Boosting算法的原理,AdaBoost算法的基本概念,训练算法,与随机森林的比较,训练误差分析,广义加法模型,指数损失函数,训练算法的推导,弱分类器的选择,样本权重削减,实际应用. AdaB ...
- Java使用IE浏览器下载文件,文件名乱码问题
String userAgent = request.getHeader("user-agent").toLowerCase(); if (userAgent.contains(& ...
- 洛谷 P1439 【模板】最长公共子序列 题解
每日一题 day40 打卡 Analysis 因为两个序列都是1~n 的全排列,那么两个序列元素互异且相同,也就是说只是位置不同罢了,那么我们通过一个book数组将A序列的数字在B序列中的位置表示出来 ...
- 洛谷 P3375 【模板】KMP字符串匹配 题解
KMP模板,就不解释了 #include<iostream> #include<cstdio> #include<cstring> #include<algo ...
- Mybatis 入门 (二)
1. Mapper配置文件处理特殊字符 用 > 和 &It; 代替 > 和 < 2. 延迟加载 单表查询性能比多表关联查询要高得多,即先查询单表,如果需要关联多表时再进行查询 ...
- stat函数
int lstat(const char *path,struct stat*buf) 当文件是一个符号链接时,lstat返回的是该符号链接本身的信息,而stat返回的是该链接指向的文件的信息. st ...
- 浅谈Python-IO多路复用(select、poll、epoll模式)
1. 什么是IO多路复用 在传统socket通信中,存在两种基本的模式, 第一种是同步阻塞IO,其线程在遇到IO操作时会被挂起,直到数据从内核空间复制到用户空间才会停止,因为对CPython来说,很多 ...
- 【洛谷】P1275 魔板(暴力&思维)
题目描述 有这样一种魔板:它是一个长方形的面板,被划分成n行m列的n*m个方格.每个方格内有一个小灯泡,灯泡的状态有两种(亮或暗).我们可以通过若干操作使魔板从一个状态改变为另一个状态.操作的方式有两 ...
- Django连接MySQL(二)
1.首先我们需要创建好项目 2.安装MySQL数据库 3.setting中修改database设置 DATABASES = { 'default': { 'ENGINE': 'django.db.ba ...