gcd

辗转相除法求gcd证明

\(gcd(a, b) == gcd(b, a\%b)\)
证明:
设: \(d\)为\(a\)与\(b\)的一个公约数, 则有\(d|b\) \(d|a\)
设: \(a = k \times b + r\) 则有\(r = a \% b\)
\(r = a - kb\) 同除以\(d\)可得
\(r\over d\) \(=\) \(a\over d\) \(-\) \(kb\over d\)
又\(\because d|b , d|a\)
\(\therefore d | r\)
即 \(d | a\%b\), \(d\)为\(a\%b\)的一个因数.
又 \(\because d|b\)
\(\therefore d\) 为\(b\)与\(a\%b\)的一个公约数,
若\(d\)最大,则\(d\)为\(b\)与\(a\%b\)的最大公约数,
\(\therefore gcd(a, b) = gcd(b, a \% b)\) 得证
然后就可以递归求解gcd了

exgcd

求出\(a*x+b*y=c\)(a,b,c为常量)的一组解,时间复杂度\(log(a)\)
证明
\(a*x+b*y=c\) 有整数解的充要条件是\(c\)整除\(gcd(a,b)\)
设\(gcd(a,b)=p\)
1.充分性:
\(a*x+b*y=c\)
\(a'*p*x+b'*p*y=c(a'=a/p)\)
\(p(a'*x+b'*y)=c;\)
因为\(x,y\)必须为整数
所以\(c\)必须整除\(p\)
2.必要性
使用欧几里得和数学归纳法可证明
首先\(b*x_1+(a \% b)*y_1=c\),有整数解,
则\(a*x_2+b*y_2=c\)有整数解
\(a*x_2+b*y_2\)
\(=b*x_1+(a \% b)*y_1\)
\(=b*x_1+(a-\lfloor \frac{a}{b} \rfloor*b)*y_1\)
\(=a*y_1+b*(x_1-\lfloor \frac{a}{b} \rfloor*y_1)\)
然后就可以得到对应关系\(x_2=y_1,y_2=(1-\lfloor \frac{a}{b} \rfloor)*y_1\);
显然最后的\(p,0\)有解
所以求这个\(a*x+b*y=c\)整数解的过程只需要不断递归运行到底层即可
最后一层\(p*x+0*y=c\)的解为\(x=\frac {c}{p},y=0\);
之后再不断用关系\(x_2=y_1,y_2=(x_1-\lfloor \frac{a}{b} \rfloor*y_1)\)推出上一层的解即可

gcd与exgcd的更多相关文章

  1. gcd以及exgcd入门讲解

    gcd就是最大公约数,gcd(x, y)一般用(x, y)表示.与此相对的是lcm,最小公倍数,lcm(x, y)一般用[x, y]表示. 人人都知道:lcm(x, y) = x * y / gcd( ...

  2. 从BZOJ2242看数论基础算法:快速幂,gcd,exgcd,BSGS

    LINK 其实就是三个板子 1.快速幂 快速幂,通过把指数转化成二进制位来优化幂运算,基础知识 2.gcd和exgcd gcd就是所谓的辗转相除法,在这里用取模的形式体现出来 \(gcd(a,b)\) ...

  3. 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数

    1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...

  4. gcd和exgcd和lcm

    Gcd▪ 欧几里得算法又称辗转相除法,用于计算两个正整数 a, b 的最大公约数.▪ 计算公式为 gcd(a,b) = gcd(b,a mod b).▪ 公式无需证明,记忆即可.▪ 如果要求多个数的最 ...

  5. 数论入门2——gcd,lcm,exGCD,欧拉定理,乘法逆元,(ex)CRT,(ex)BSGS,(ex)Lucas,原根,Miller-Rabin,Pollard-Rho

    数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p ...

  6. 关于gcd和exgcd的一点心得,保证看不懂(滑稽)

    网上看了半天……还是没把欧几里得算法和扩展欧几里得算法给弄明白…… 然后想了想自己写一篇文章好了…… 参考文献:https://www.cnblogs.com/hadilo/p/5914302.htm ...

  7. Algorithm: GCD、EXGCD、Inverse Element

    数论基础 数论是纯数学的一个研究分支,主要研究整数的性质.初等数论包括整除理论.同余理论.连分数理论.这一篇主要记录的是同余相关的基础知识. 取模 取模是一种运算,本质就是带余除法,运算结果就是余数. ...

  8. 【模板】gcd和exgcd

    1. gcd: int gcd(int a,int b) { return !b?a:gcd(b,a%b); } exgcd: int exgcd(int a,int b,int& x,int ...

  9. gcd&&exgcd&&斐蜀定理

    gcd就是求a和b最大公约数,一般方法就是递推.不多说,上代码. 一.迭代法 int gcd(int m, int n) { ) { int c = n % m; n = m; m = c; } re ...

随机推荐

  1. pandas的使用(6)离散化和合并

    pandas的使用(6)离散化和合并

  2. [转帖]超能课堂(210) 笔记本中常说的PL1、PL2到底如何影响CPU性能?

    超能课堂(210)笔记本中常说的PL1.PL2到底如何影响CPU性能? https://www.expreview.com/71943.html 本文约 4070 字,需 7 分钟阅读 (切换至标准版 ...

  3. Linux系统安装snmp服务

    Linux安装snmp详解 Snmp一种网络之间的传输协议,通过snmp可以采集很多指标比如cpu.内存及磁盘的信息,现在越来越多的网络设备基本上都支持snmp,本文介绍了snmp的安装过程. 二.安 ...

  4. 【生活现场】从打牌到map-reduce工作原理解析(转)

    原文:http://www.sohu.com/a/287135829_818692 小史是一个非科班的程序员,虽然学的是电子专业,但是通过自己的努力成功通过了面试,现在要开始迎接新生活了. 对小史面试 ...

  5. WPF 精修篇 非UI进程后台更新UI进程

    原文:WPF 精修篇 非UI进程后台更新UI进程 <Grid> <Grid.RowDefinitions> <RowDefinition Height="11* ...

  6. C# vb .NET从pdf读取识别条形码线性条码

    如何在C#,vb等.NET平台语言里实现快速准确从pdf文件读取,或者从Pdf指定页面读取条形码或QR二维码呢?答案是使用SharpBarcode! SharpBarcode是C#快速高效.准确的条形 ...

  7. 华为 鸿蒙系统(HarmonyOS)

    HarmonyOS Ⅰ. 鸿蒙系统简介 鸿蒙系统(HarmonyOS),是第一款基于微内核的全场景分布式OS,是华为自主研发的操作系统.2019年8月9日,鸿蒙系统在华为开发者大会<HDC.20 ...

  8. Java高级工程师面试宝典

    Java高级工程师面试宝典 JavaSE 多线程 进程与线程的区别? 答:进程是所有线程的集合,每一个线程是进程中的一条执行路径,线程只是一条执行路径. 为什么要用多线程? 答:提高程序效率 多线程创 ...

  9. mask-rcnn解读(二):clip_boxes_graph()

    此函数是利用deltas对box修正,我并没有详细说明,若有问题,欢迎留言交流: def clip_boxes_graph(boxes, window): """ box ...

  10. vim进阶

    输入终端命令:!+命令 sudo保存:w !sudo tee % 显示当前路径::pwd 查看缓冲区::ls 打开缓冲区文件:buffer 2 命令补全:Tab键 :r!date读shell日期到vi ...