CF449E Jzzhu and Squares
题目大意:有一个$n\times m$的方格图,求其中所有的格点正方形完整包含的小方格个数,多组询问。$n,m\leqslant 10^6$
题解:令$n\leqslant m$。有一个显然的式子:
$$
ans=\sum\limits_{i=1}^n(n-i+1)(m-i+1)f(i)
$$
$f(i)$表示可以完整包含在$i\times i$的正方形中且顶点在这个正方形边上的正方形所包含的小方格总数。可以分选的正方形和$i\times i$正方形重合和边转动$j$格来计算
$$
f(n)=n^2+\sum\limits_{i=1}^{n-1}[(n-2\max\{i,n-1\})^2+g(i,n-i)]
$$
其中$(n-2\max\{i,n-1\})^2$是转动$i$格后正中间的完整小方格,$g(i,n-i)$表示四周的$4$个小直角三角形中包含的完整小方格个数。
比如计算左上角的直角三角形,发现完整的小方格的左上角满足在直角三角形的斜边上或三角形内。三角形内的点可以用皮克定理来解决,令三角形两直角边为$n,m$,则三角形内的点个数为$\dfrac{nm-n-m+2-\gcd(n,m)}2$,再加上在斜边上的点,则一个直角三角形内的方格数为$\dfrac{nm-m-n+gcd(n,m)}2$。
把$n=i,m=n-i$带入式子
$$
\begin{align*}
f(n)=&n^2+\sum\limits_{i=1}^{n-1}[(n-2\max\{i,n-1\})^2+g(i,n-i)]\\
=&n^2+\sum\limits_{i=1}^{n-1}(n-2\max\{i,n-1\})^2+\sum\limits_{i=1}^{n-1}g(i,n-i)\\
=&n^2+\sum\limits_{i=1}^{\left\lfloor\frac{n-1}2\right\rfloor}(n-2i)^2+\sum\limits_{i=\left\lfloor\frac{n-1}2\right\rfloor+1}^{n-1}(2i-n)^2\\
&+\sum\limits_{i=1}^{n-1}\dfrac{i(n-i)-(n-i)-i+\gcd(i,n-i)}2\\
=&n^2+2\sum\limits_{i=1}^{\left\lfloor\frac{n-1}2\right\rfloor}(n-2i)^2+\sum\limits_{i=1}^{n-1}\dfrac{in-i^2-n+\gcd(i,n)}2
\end{align*}
$$
其中$n^2$可以快速计算,$\sum\limits_{i=1}^{\left\lfloor\frac{n-1}2\right\rfloor}(n-2i)^2$可以前缀和解决,问题在$\sum\limits_{i=1}^{n-1}\dfrac{in-i^2-n+\gcd(i,n)}2$部分。令$h(n)=\sum\limits_{i=1}^{n-1}\dfrac{in-i^2-n+\gcd(i,n)}2$,$sgcd(n)=\sum\limits_{i=1}^{n-1}\gcd(i,n)$
$$
h(n)=\dfrac12[\sum\limits_{i=1}^{n-1}(in-i^2-n)+sgcd(n)]\\
\begin{align*}
h(n-1)&=\dfrac12[\sum\limits_{i=1}^{n-2}(i(n-1)-i^2-(n-1))+sgcd(n-1)]\\
&=\dfrac12[\sum\limits_{i=1}^{n-2}(in-i^2-n-i+1)+sgcd(n-1)]\\
\end{align*}\\
$$
$$
\begin{align*}
h(n)=&h(n-1)+\dfrac12[\sum\limits_{i=1}^{n-2}(i-1)+(n-1)n-(n-1)^2-n\\
&-sgcd(n-1)+sgcd(n)]\\
=&h(n-1)+\dfrac12[\left(\sum\limits_{i=0}^{n-3}i\right)-1-sgcd(n-1)+sgcd(n)]\\
=&h(n-1)+\dfrac12[\left(\dfrac{(n-2)(n-3)}2\right)-1-sgcd(n-1)+sgcd(n)]
\end{align*}
$$
其他部分都可以快速求出,问题在求$sgcd(n)$
$$
\begin{align*}
sgcd(n)&=\sum\limits_{i=1}^{n-1}\gcd(i,n)\\
&=\left(\sum\limits_{d|n}\dfrac nd\varphi(d)\right)-n
\end{align*}
$$
全部预处理出来即可。
卡点:无
C++ Code:
#include <cstdio>
#include <algorithm>
#include <iostream>
#define mul(a, b) (static_cast<long long> (a) * (b) % mod)
const int mod = 1e9 + 7, maxn = 1e6 + 10, half = (mod + 1) / 2;
inline void reduce(int &x) { x += x >> 31 & mod; } int gcd(int a, int b) {
if (!b) return a;
return gcd(b, a % b);
}
inline int sqr(int x) { return mul(x, x); } int g[maxn], sumgcd[maxn], phi[maxn], plist[maxn / 2], ptot;
int pre[maxn], R[maxn], T[maxn], preF[maxn];
bool notp[maxn];
int Q; int F(int n) {
int ans = g[n];
reduce(ans += sqr(n) - mod);
reduce(ans += pre[n - 2] - mod);
reduce(ans += pre[n - 2] - mod);
return ans;
}
void sieve(int N) {
phi[1] = 1;
for (int i = 2; i <= N; i++) {
if (!notp[i]) phi[plist[ptot++] = i] = i - 1;
for (int j = 0, t; j < ptot && (t = i * plist[j]) <= N; j++) {
notp[t] = true;
if (i % plist[j] == 0) {
phi[t] = phi[i] * plist[j];
break;
}
phi[t] = phi[i] * phi[plist[j]];
}
}
for (int i = 1; i <= N; ++i) {
for (int j = i + i; j <= N; j += i) reduce(sumgcd[j] += mul(phi[j / i], i));
}
for (int i = 4; i <= N; ++i) {
g[i] = (1ll * (i - 3) * (i - 2) / 2 - 1 - sumgcd[i - 1] + sumgcd[i]) % mod;
reduce(g[i]);
g[i] = mul(g[i], half);
reduce(g[i] += g[i - 1] - mod);
}
for (int i = 1; i <= N; ++i) g[i] = mul(g[i], 4);
pre[1] = 1;
for (int i = 2; i <= N; ++i) reduce(pre[i] = pre[i - 2] + sqr(i) - mod);
for (int i = 1; i <= N; ++i) reduce(preF[i] = preF[i - 1] + F(i) - mod);
for (int i = 1; i <= N; ++i) {
reduce(R[i] = R[i - 1] + preF[i - 1] - mod);
reduce(R[i] += F(i) - mod);
}
for (int i = 1; i <= N; ++i) {
reduce(T[i] = T[i - 1] + preF[i - 1] - mod);
reduce(T[i] += R[i - 1] - mod);
reduce(T[i] += R[i - 1] - mod);
reduce(T[i] += F(i) - mod);
}
}
int solve(int n, int m) {
int ans = T[n];
reduce(ans += mul(R[n], m - n) - mod);
return ans;
} int main() {
std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
sieve(1000005);
std::cin >> Q;
while (Q --> 0) {
static int n, m;
std::cin >> n >> m;
if (n > m) std::swap(n, m);
std::cout << solve(n, m) << '\n';
}
return 0;
}
CF449E Jzzhu and Squares的更多相关文章
- soj#552 449E Jzzhu and Squares
分析 https://www.cnblogs.com/Memory-of-winter/p/11209128.html 代码 #include<bits/stdc++.h> using n ...
- CF449 (Div. 1简单题解)
A .Jzzhu and Chocolate pro:现在给定一个大小为N*M的巧克力,让你横着或者竖着切K刀,都是切的整数大小,而且不能切在相同的地方,求最大化其中最小的块. (N,M,K<1 ...
- Codeforces Round #257 (Div. 1)449A - Jzzhu and Chocolate(贪婪、数学)
主题链接:http://codeforces.com/problemset/problem/449/A ------------------------------------------------ ...
- Codeforces Round #257 (Div. 2) C. Jzzhu and Chocolate
C. Jzzhu and Chocolate time limit per test 1 second memory limit per test 256 megabytes input standa ...
- cf 450c Jzzhu and Chocolate
Jzzhu and Chocolate time limit per test 1 second memory limit per test 256 megabytes input standard ...
- Codeforces 450C:Jzzhu and Chocolate(贪心)
C. Jzzhu and Chocolate time limit per test: 1 seconds memory limit per test: 256 megabytes input: st ...
- [LeetCode] Word Squares 单词平方
Given a set of words (without duplicates), find all word squares you can build from them. A sequence ...
- 卡通图像变形算法(Moving Least Squares)附源码
本文介绍一种利用移动最小二乘法来实现图像变形的方法,该方法由用户指定图像中的控制点,并通过拖拽控制点来驱动图像变形.假设p为原图像中控制点的位置,q为拖拽后控制点的位置,我们利用移动最小二乘法来为原图 ...
- Leetcode: Word Squares && Summary: Another Important Implementation of Trie(Retrieve all the words with a given Prefix)
Given a set of words (without duplicates), find all word squares you can build from them. A sequence ...
随机推荐
- Educational Codeforces Round 67
Educational Codeforces Round 67 CF1187B Letters Shop 二分 https://codeforces.com/contest/1187/submissi ...
- python设计模式---绪论
1.程序只是一个工具,只知道使用工具就有价值的时代正在过去:现在对工作质量.开发速度及完美程度都很重要了.当前主要的问题是对工具的充分利用,在生活的方方面面,简单任务之所以简单是由于这些任务不需要特殊 ...
- MATLAB关闭科学计数法显示
- CFD-Post批处理(在一系列算例同一位置截取速度云图)
批量在一系列算例的同一位置截取面,并显示截面的速度分布云图 现在我们有一系列的算例 我们打开CFD-Post 我们编写如下的Python代码来实现在一系列算例的同一位置截面,并显示界面的速度分布云图 ...
- PostgreSQL中的表连接操作
- 000 okhttp3的Get使用
一:概述 1.说明 java与android都可以使用. 是网络请求的开源框架. square公司开发,用于替代HttpUrlConnection和Apache HttpClient 2.优点 支持 ...
- CocosCreator之打包android
1:准备资料 1:sdk,下载地址http://www.androiddevtools.cn/ 2:jdk下载地址http://www.oracle.com/technetwork/Java/java ...
- 用SC命令 添加或删除windows服务提示OpenSCManager 失败5
在安装命令行中安装 windowsOpenSCManager 失败5 的错误,原因是当前用户的权限不足,需要做的是在注册表 HKEY_LOCAL_MACHINE\Software\Microsof ...
- (8)Flask微电影项目会员中心其他页面搭建
会员中心修改密码.评论.登录日志和收藏电影4个页面的内容. 一.修改密码页面: {% extends "home/home.html" %} {% block css %} < ...
- CNeo编程语言概述
C语言诞生于1970年,当时在AT&T实验室由Dennis Ritchie主导开发的.据说当时仅用了一周的时间就做好了C语言编译器,所以尽管C语言从90年正式纳入ISO标准委员会,其编号为IS ...