Graph

本次学术前沿讲座由邵斌老师主讲,标题已经揭示了主题:Graph。1.5h的talk,听完自觉意犹未尽。本来以为是一节自己没接触过的图形学的talk,没想到讲的很多内容都跟自己学过的很多东西能Match。这里记录了一些笔记与各位分享,希望各位园友一起跟着邵斌老师来感受一下Graph的魅力。
Lecture是以三个领域的对比娓娓道来的:Graph、Image与Graphics。直观上讲,Image象征图像处理,Graphics则是计算机图形学。
那么,Graph是什么呢?它其实一点也不神秘。对大多数程序员来说,它可能要比前两者更亲切,因为大部分人都曾在数据结构书中见过它。比如著名的七桥问题,抽象为图的结构,就是这样的:

这里的Graph,我们用图谱来称呼它可能更为合适。和图像图形相比,它显得更抽象一些,所以概括能力也更强:我们可以说一个社交网络是一张图谱,一个人物关系也是一张图谱,图谱在我们生活之中无处不在。引用一句充满哲学意味的话来形容就是:“万物之间皆有联系”。万物组成了一张大大的图谱,每个人都是其中的一个结点。粗浅地了解一下图谱的基本概念以后,就开始进入本次talk的主题。

Challenges

我们在处理大规模的图谱时,会遇到各种各样的挑战,包括但不仅限于以下:

  • 图的多样性
    由于实体和关系的复杂性,图的多样性也是必然事件。笔者以为,图的多样性作为挑战之一,主要是因为它给建设统一的图谱处理系统带来了巨大的困难。不同的图谱依赖的数据特点不一,对于不同的图谱需要的处理方法即使相似,但也还是有不小差异。
  • 计算的多样性
    在图谱处理的背后是大量的计算,所以计算对图谱的处理有很重要的影响。丰富的操作类型决定了多种多样的计算模式,比如:有Online的查询处理,也有Offline的数据分析,不同的操作对应着不同的计算方式,这些都是在构建图谱时所需要面对的challenge。
  • 图的规模
    如果一个任务的计算规模很大,那么我们可以把它分成若干个子任务,在不同的机器上分别跑每个子任务。当每个子任务顺利完成后,我们把子任务的结果汇总合并,就可以得到原任务的结果了。这是传统的做法,也就是MapReduce的大致思路。然而在面对图时,这样的办法就不是很奏效了。最大的困难之处在于:图很难切割。MapReduce是分而治之,但图的处理在第一步上就栽了个跟头。

Design Principles

下面我们来介绍一下在设计一个系统时用到的一些通用的设计准则。

No one size fits all

第一条,也是非常重要的一条设计准则:There is no one-size-fits-all system. What is one size fits all?
没有任何一个系统是可以放之四海而皆准的。当然,现有的系统当然是能够处理图的,从这一方面讲,图这个东西就像链表,数组等,只是一种数据结构,没有什么特别的地方。但是,能够处理只是最基本的功能,我们这里所说的“皆准”指的是:对于不同的数据结构有大致相同的处理性能。
但我们目前分层的体系结构中,在处理图和处理其他数据结构的速度上会有巨大的差异。这种差异主要来源于图区别于其他的一些特性,这些特性恰恰与分层体系结构的设计理念产生了冲突。

Random Access

有计算机基础的同学应该都知道局部性原理。它强调了CPU访存时的一大特性:所访问的存储单元总趋向于在一小块连续区域【更完整准确的解释戳这里】。这样就意味着,当我们访问了一块数据后,接下来一段时间内的活跃数据将是这块数据周围的数据。既然我们可以预测活跃数据,那我们就希望把这些活跃数据预取到访问速度最快的存储器中,以此来减少平均访问数据的时间,这样做代价又小,效果又好。于是,Cache出现了。

但是想象一下,如果我们要对一个图遍历操作,就会在大量的结点之间跳来跳去。图的结构决定了在遍历时是真正的随机存储访问,局部性很弱。在这种局部性概念极度弱化的场景下,一个结点相邻的存储数据刚取到Cache里,跳跃一个相邻结点可能会命中Cache,但再跳跃一个结点,就很难继续命中Cache了。这是制约图处理速度的很重要的一部分原因。
当然,笔者认为,存在大量先验知识的情况下,我们做一些对图结构友好的Cache优化也是可以的。比如统计概率上关联更深的结点,把它们在内存布局上调整靠近,以满足Cache预取的本意(访问最频繁的数据放在最快的存储器中)。

Hard to Divide

之前也提到了,传统的MapReduce无法在图的处理上很好work的主要原因就是图很难Divide。所以也就没有什么高效的分治算法,不好做Partition。

Data Driven

在图谱中,最重要的部分就是支撑图谱的数据。不同的数据组织对图谱的效率影响很大,不仅仅只有算法才会影响图处理的效率。

Tradeoff

我们要做的是一个可work的系统,而不是一个只能供观赏的art。所以在设计一个系统时不能总追求理想化的完美,总要考虑一些 Tradeoff。在图处理的问题上就有一些Tradeoff值得我们考虑:

  1. 要支持online query, offline analytic, 或者两者都支持?
  2. 要针对吞吐量(throughput),还是在响应时间(response time)上做优化?
  3. scale "out" 还是 "up"?
  4. 是否需要事务支持?

在online or offline的选择上,online查询更加注重响应速度,而offline分析则更加注重吞吐量。通常意义来说,online查询更加难以优化。我们上面提到了,在图处理时,数据存取局部性较弱,很难普遍提高响应速度。

【未完待续,迭代发布...】

【ARL】Parallel Processing of Graphs的更多相关文章

  1. [讲座] Parallel Processing of Graphs

    Graph 本次学术前沿讲座由邵斌老师主讲,标题已经揭示了主题:Graph.1.5h的talk,听完自觉意犹未尽.本来以为是一节自己没接触过的图形学的talk,没想到讲的很多内容都跟自己学过的很多东西 ...

  2. 图上的并行处理 Parallel Processing of Graphs

    Graph 本次学术前沿讲座由邵斌老师主讲,标题已经揭示了主题:Graph.1.5h的talk,听完自觉意犹未尽.本来以为是一节自己没接触过的图形学的talk,没想到讲的很多内容都跟自己学过的很多东西 ...

  3. 【转】Plotting texts as graphs with R and igraph

    原文转自:http://blog.ynada.com/303 I’ve plotted several word association graphs for this New York Times ...

  4. 【ORACLE】Bulk Processing with BULK COLLECT and FORALL

    https://orablogspot.blogspot.com/2014/09/ https://blogs.oracle.com/oraclemagazine/bulk-processing-wi ...

  5. 【439】Tweets processing by Python

        参数说明: coordinates:Represents the geographic location of this Tweet as reported by the user or cl ...

  6. 【C#】线程之Parallel

    在一些常见的编程情形中,使用任务也许能提升性能.为了简化变成,静态类System.Threading.Tasks.Parallel封装了这些常见的情形,它内部使用Task对象. Parallel.Fo ...

  7. 【AI】Exponential Stochastic Cellular Automata for Massively Parallel Inference - 大规模并行推理的指数随机元胞自动机

    [论文标题]Exponential Stochastic Cellular Automata for Massively Parallel Inference     (19th-ICAIS,PMLR ...

  8. 并行【parallel】和并发【concurrency】线程是并发还是并行,进程是并发还是并行

    线程是并发,进程是并行:进程之间相互独立,是系统分配资源的最小单位,同一个线程中的所有线程共享资源. 并行,同一时刻多个任务同时在运行. 并发,在同一时间内隔内多个任务都在运行,但是都不会在同一时刻同 ...

  9. 【原】Android热更新开源项目Tinker源码解析系列之一:Dex热更新

    [原]Android热更新开源项目Tinker源码解析系列之一:Dex热更新 Tinker是微信的第一个开源项目,主要用于安卓应用bug的热修复和功能的迭代. Tinker github地址:http ...

随机推荐

  1. CSS基础篇之选择符2

    属性选择符: 选择符 版本 描述 E[att] CSS2 选择具有att属性的E元素. E[att="val"] CSS2 选择具有att属性且属性值等于val的E元素. E[at ...

  2. window下搭建c开发环境(GNU环境的安装)

    一.在windows平台上安装GNU环境 windows操作系统不自带GNU环境,如果需要开发跨平台的C语言程序,那么需要给windows安装GNU环境 windows下的两款GNU环境:MinGW和 ...

  3. 培训SQLServer 嵌套事务PPT分享

    培训SQLServer 嵌套事务PPT分享 下载地址 http://files.cnblogs.com/files/lyhabc/SQLServer%E5%B5%8C%E5%A5%97%E4%BA%8 ...

  4. Unity 5.3.5p8 C#编译器升级

    Unity 5.3.5p8的C#编译器升级 注意:该版本是单独升级C#编译器的测试版!请使用文中提供的下载链接! 基于Unity 5.3.5p8的C#编译器升级!下载链接 试用该版本前请先备份项目,遇 ...

  5. 【腾讯Bugly干货分享】让 CodeReview 这股清流再飞一会儿

    本文来自于腾讯Bugly公众号(weixinBugly),未经作者同意,请勿转载,原文地址:https://mp.weixin.qq.com/s/ToYeT4Y4pzx0ii9Z92fo-Q 作者:刘 ...

  6. 【腾讯Bugly干货分享】美团大众点评 Hybrid 化建设

    本文来自于腾讯Bugly公众号(weixinBugly),未经作者同意,请勿转载,原文地址:http://mp.weixin.qq.com/s/rNGD6SotKoO8frmxIU8-xw 本期 T ...

  7. Atitit 深入理解耦合Coupling的原理与attilax总结

    Atitit 深入理解耦合Coupling的原理与attilax总结     耦合是指两个或两个以上的电路元件或电网络等的输入与输出之间存在紧密配合与相互影响,并通过相互作用从一侧向另一侧传输能量的现 ...

  8. Android-Activity-Dialog theme touch outsize

    最近遇到一个蛋疼的问题: 一个Activity,主题设置成 Dialog 然后点击外面要求这个Activity 不能关闭. 这下好了,直接在 style 的 theme 里面加一个属性就好了. 加上去 ...

  9. python3.5 正则表达式

    我们平时上网的时候,经常需要在一些网站上注册帐号,而注册帐号的时候对帐号名称会有一些要求. 比如: 上面的图片中,输入的邮件地址.密码.手机号 才可以注册成功. 我们需要匹配用户输入的内容,判断用户输 ...

  10. iOS-----dSYM 文件分析工具

    来到新公司后,前段时间就一直在忙,前不久 项目 终于成功发布上线了,最近就在给项目做优化,并排除一些线上软件的 bug,因为项目中使用了友盟统计,所以在友盟给出的错误信息统计中能比较方便的找出客户端异 ...