Graph

本次学术前沿讲座由邵斌老师主讲,标题已经揭示了主题:Graph。1.5h的talk,听完自觉意犹未尽。本来以为是一节自己没接触过的图形学的talk,没想到讲的很多内容都跟自己学过的很多东西能Match。这里记录了一些笔记与各位分享,希望各位园友一起跟着邵斌老师来感受一下Graph的魅力。
Lecture是以三个领域的对比娓娓道来的:Graph、Image与Graphics。直观上讲,Image象征图像处理,Graphics则是计算机图形学。
那么,Graph是什么呢?它其实一点也不神秘。对大多数程序员来说,它可能要比前两者更亲切,因为大部分人都曾在数据结构书中见过它。比如著名的七桥问题,抽象为图的结构,就是这样的:

这里的Graph,我们用图谱来称呼它可能更为合适。和图像图形相比,它显得更抽象一些,所以概括能力也更强:我们可以说一个社交网络是一张图谱,一个人物关系也是一张图谱,图谱在我们生活之中无处不在。引用一句充满哲学意味的话来形容就是:“万物之间皆有联系”。万物组成了一张大大的图谱,每个人都是其中的一个结点。粗浅地了解一下图谱的基本概念以后,就开始进入本次talk的主题。

Challenges

我们在处理大规模的图谱时,会遇到各种各样的挑战,包括但不仅限于以下:

  • 图的多样性
    由于实体和关系的复杂性,图的多样性也是必然事件。笔者以为,图的多样性作为挑战之一,主要是因为它给建设统一的图谱处理系统带来了巨大的困难。不同的图谱依赖的数据特点不一,对于不同的图谱需要的处理方法即使相似,但也还是有不小差异。
  • 计算的多样性
    在图谱处理的背后是大量的计算,所以计算对图谱的处理有很重要的影响。丰富的操作类型决定了多种多样的计算模式,比如:有Online的查询处理,也有Offline的数据分析,不同的操作对应着不同的计算方式,这些都是在构建图谱时所需要面对的challenge。
  • 图的规模
    如果一个任务的计算规模很大,那么我们可以把它分成若干个子任务,在不同的机器上分别跑每个子任务。当每个子任务顺利完成后,我们把子任务的结果汇总合并,就可以得到原任务的结果了。这是传统的做法,也就是MapReduce的大致思路。然而在面对图时,这样的办法就不是很奏效了。最大的困难之处在于:图很难切割。MapReduce是分而治之,但图的处理在第一步上就栽了个跟头。

Design Principles

下面我们来介绍一下在设计一个系统时用到的一些通用的设计准则。

No one size fits all

第一条,也是非常重要的一条设计准则:There is no one-size-fits-all system. What is one size fits all?
没有任何一个系统是可以放之四海而皆准的。当然,现有的系统当然是能够处理图的,从这一方面讲,图这个东西就像链表,数组等,只是一种数据结构,没有什么特别的地方。但是,能够处理只是最基本的功能,我们这里所说的“皆准”指的是:对于不同的数据结构有大致相同的处理性能。
但我们目前分层的体系结构中,在处理图和处理其他数据结构的速度上会有巨大的差异。这种差异主要来源于图区别于其他的一些特性,这些特性恰恰与分层体系结构的设计理念产生了冲突。

Random Access

有计算机基础的同学应该都知道局部性原理。它强调了CPU访存时的一大特性:所访问的存储单元总趋向于在一小块连续区域【更完整准确的解释戳这里】。这样就意味着,当我们访问了一块数据后,接下来一段时间内的活跃数据将是这块数据周围的数据。既然我们可以预测活跃数据,那我们就希望把这些活跃数据预取到访问速度最快的存储器中,以此来减少平均访问数据的时间,这样做代价又小,效果又好。于是,Cache出现了。

但是想象一下,如果我们要对一个图遍历操作,就会在大量的结点之间跳来跳去。图的结构决定了在遍历时是真正的随机存储访问,局部性很弱。在这种局部性概念极度弱化的场景下,一个结点相邻的存储数据刚取到Cache里,跳跃一个相邻结点可能会命中Cache,但再跳跃一个结点,就很难继续命中Cache了。这是制约图处理速度的很重要的一部分原因。
当然,笔者认为,存在大量先验知识的情况下,我们做一些对图结构友好的Cache优化也是可以的。比如统计概率上关联更深的结点,把它们在内存布局上调整靠近,以满足Cache预取的本意(访问最频繁的数据放在最快的存储器中)。

Hard to Divide

之前也提到了,传统的MapReduce无法在图的处理上很好work的主要原因就是图很难Divide。所以也就没有什么高效的分治算法,不好做Partition。

Data Driven

在图谱中,最重要的部分就是支撑图谱的数据。不同的数据组织对图谱的效率影响很大,不仅仅只有算法才会影响图处理的效率。

Tradeoff

我们要做的是一个可work的系统,而不是一个只能供观赏的art。所以在设计一个系统时不能总追求理想化的完美,总要考虑一些 Tradeoff。在图处理的问题上就有一些Tradeoff值得我们考虑:

  1. 要支持online query, offline analytic, 或者两者都支持?
  2. 要针对吞吐量(throughput),还是在响应时间(response time)上做优化?
  3. scale "out" 还是 "up"?
  4. 是否需要事务支持?

在online or offline的选择上,online查询更加注重响应速度,而offline分析则更加注重吞吐量。通常意义来说,online查询更加难以优化。我们上面提到了,在图处理时,数据存取局部性较弱,很难普遍提高响应速度。

【未完待续,迭代发布...】

【ARL】Parallel Processing of Graphs的更多相关文章

  1. [讲座] Parallel Processing of Graphs

    Graph 本次学术前沿讲座由邵斌老师主讲,标题已经揭示了主题:Graph.1.5h的talk,听完自觉意犹未尽.本来以为是一节自己没接触过的图形学的talk,没想到讲的很多内容都跟自己学过的很多东西 ...

  2. 图上的并行处理 Parallel Processing of Graphs

    Graph 本次学术前沿讲座由邵斌老师主讲,标题已经揭示了主题:Graph.1.5h的talk,听完自觉意犹未尽.本来以为是一节自己没接触过的图形学的talk,没想到讲的很多内容都跟自己学过的很多东西 ...

  3. 【转】Plotting texts as graphs with R and igraph

    原文转自:http://blog.ynada.com/303 I’ve plotted several word association graphs for this New York Times ...

  4. 【ORACLE】Bulk Processing with BULK COLLECT and FORALL

    https://orablogspot.blogspot.com/2014/09/ https://blogs.oracle.com/oraclemagazine/bulk-processing-wi ...

  5. 【439】Tweets processing by Python

        参数说明: coordinates:Represents the geographic location of this Tweet as reported by the user or cl ...

  6. 【C#】线程之Parallel

    在一些常见的编程情形中,使用任务也许能提升性能.为了简化变成,静态类System.Threading.Tasks.Parallel封装了这些常见的情形,它内部使用Task对象. Parallel.Fo ...

  7. 【AI】Exponential Stochastic Cellular Automata for Massively Parallel Inference - 大规模并行推理的指数随机元胞自动机

    [论文标题]Exponential Stochastic Cellular Automata for Massively Parallel Inference     (19th-ICAIS,PMLR ...

  8. 并行【parallel】和并发【concurrency】线程是并发还是并行,进程是并发还是并行

    线程是并发,进程是并行:进程之间相互独立,是系统分配资源的最小单位,同一个线程中的所有线程共享资源. 并行,同一时刻多个任务同时在运行. 并发,在同一时间内隔内多个任务都在运行,但是都不会在同一时刻同 ...

  9. 【原】Android热更新开源项目Tinker源码解析系列之一:Dex热更新

    [原]Android热更新开源项目Tinker源码解析系列之一:Dex热更新 Tinker是微信的第一个开源项目,主要用于安卓应用bug的热修复和功能的迭代. Tinker github地址:http ...

随机推荐

  1. SQL Server中CROSS APPLY和OUTER APPLY的应用详解

    SQL Server数据库操作中,在2005以上的版本新增加了一个APPLY表运算符的功能.新增的APPLY表运算符把右表表达式应用到左表表达式中的每一行.它不像JOIN那样先计算那个表表达式都可以, ...

  2. ENode框架Conference案例分析系列之 - 架构设计

    Conference架构概述 先贴一下Conference案例的在线地址,UI因为完全拿了微软的实现,所以都是英文的,以后我有空再改为中文的. Conference后台会议管理:http://www. ...

  3. 分享我们项目中基于EF事务机制的架构

    写在前面: 1. 本文中单元测试用到的数据库,在执行测试之前,会被清空,即使用空数据库. 2. 本文中的单元测试都是正确通过的. 要理解EF的事务机制,首先要理解这2个类:TransactionSco ...

  4. 玩转Windows服务系列——服务运行、停止流程浅析

    通过研究Windows服务注册卸载的原理,感觉它并没有什么特别复杂的东西,Windows服务正在一步步退去它那神秘的面纱,至于是不是美女,大家可要睁大眼睛看清楚了. 接下来研究一下Windows服务的 ...

  5. ie a absolute bug

    给a设置position:absolute时,在IE下,尽管display:block;width:100%;height:100%,依然无法点击.但是加一个背景颜色就可以了.如果不需要背景,再把背景 ...

  6. [ASP.NET MVC 大牛之路]01 - 开篇

    匆匆2014,转眼就到末尾了.在这一年,你还有哪事情些想做而没有做? 2014年在我身上发生了两件意义重大的事,一是正月初一宝宝出生,我升级成为了爸爸:二是进入了一家创业公司,成为了技术负责人. 去年 ...

  7. C/C++预处理指令#define,#ifdef,#ifndef,#endif…

    2016年12月29日更新: 今天查看以前文件的时候, 突然发现了#error 这个预处理指令.然后回想一下工作, 发现这个指令使用场景还是很多的.比如: 一个项目的模块儿之多,源文件之大,代码之多, ...

  8. Web Modify The Html Elements According Url Parameters With Jquery

    需求说明 根据URL的参数, 来批量的对某些HTML元素做统一的修改. 解决思路 首先, 想办法获得这个URL的参数, 然后遍历对应的HTML元素, 做出对应的修改. 即可. 代码实现 <!DO ...

  9. defered,promise回顾

    defered,promise回顾 http://www.ruanyifeng.com/blog/2011/08/a_detailed_explanation_of_jquery_deferred_o ...

  10. [CentOs7]搭建ftp服务器(3)——上传,下载,删除,重命名,新建文件夹

    摘要 上篇文章介绍了如何为ftp添加虚拟用户,本篇将继续实践如何上传,下载文件. 上传 使用xftp客户端上传文件,如图所示 此时上传状态报错,查看详情 从错误看出是应为无法创建文件造成的.那么我们就 ...