【tensorflow-v2.0】如何将模型转换成tflite模型
前言
TensorFlow Lite 提供了转换 TensorFlow 模型,并在移动端(mobile)、嵌入式(embeded)和物联网(IoT)设备上运行 TensorFlow 模型所需的所有工具。之前想部署tensorflow模型,需要转换成tflite模型。
实现过程
1.不同模型的调用函数接口稍微有些不同
# Converting a SavedModel to a TensorFlow Lite model.
converter = lite.TFLiteConverter.from_saved_model(saved_model_dir)
tflite_model = converter.convert() # Converting a tf.Keras model to a TensorFlow Lite model.
converter = lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert() # Converting ConcreteFunctions to a TensorFlow Lite model.
converter = lite.TFLiteConverter.from_concrete_functions([func])
tflite_model = converter.convert()
2. 完整的实现
import tensorflow as tf
saved_model_dir = './mobilenet/'
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)
converter.experimental_new_converter = True
tflite_model = converter.convert()
open('model_tflite.tflite', 'wb').write(tflite_model)
其中,
@classmethod
from_saved_model(
cls,
saved_model_dir,
signature_keys=None,
tags=None
)
另外
For more complex SavedModels, the optional parameters that can be passed into TFLiteConverter.from_saved_model() are input_arrays, input_shapes, output_arrays, tag_set and signature_key. Details of each parameter are available by running help(tf.lite.TFLiteConverter).
对于如何查看模型的操作op,可查看here;
help(tf.lite.TFLiteConverter)结果
Help on class TFLiteConverterV2 in module tensorflow.lite.python.lite: class TFLiteConverterV2(TFLiteConverterBase)
| TFLiteConverterV2(funcs, trackable_obj=None)
|
| Converts a TensorFlow model into TensorFlow Lite model.
|
| Attributes:
| allow_custom_ops: Boolean indicating whether to allow custom operations.
| When false any unknown operation is an error. When true, custom ops are
| created for any op that is unknown. The developer will need to provide
| these to the TensorFlow Lite runtime with a custom resolver.
| (default False)
| target_spec: Experimental flag, subject to change. Specification of target
| device.
| optimizations: Experimental flag, subject to change. A list of optimizations
| to apply when converting the model. E.g. `[Optimize.DEFAULT]
| representative_dataset: A representative dataset that can be used to
| generate input and output samples for the model. The converter can use the
| dataset to evaluate different optimizations.
| experimental_enable_mlir_converter: Experimental flag, subject to change.
| Enables the MLIR converter instead of the TOCO converter.
|
| Example usage:
|
| ```python
| # Converting a SavedModel to a TensorFlow Lite model.
| converter = lite.TFLiteConverter.from_saved_model(saved_model_dir)
| tflite_model = converter.convert()
|
| # Converting a tf.Keras model to a TensorFlow Lite model.
| converter = lite.TFLiteConverter.from_keras_model(model)
| tflite_model = converter.convert()
|
| # Converting ConcreteFunctions to a TensorFlow Lite model.
| converter = lite.TFLiteConverter.from_concrete_functions([func])
| tflite_model = converter.convert()
| ```
|
| Method resolution order:
| TFLiteConverterV2
| TFLiteConverterBase
| builtins.object
|
| Methods defined here:
|
| __init__(self, funcs, trackable_obj=None)
| Constructor for TFLiteConverter.
|
| Args:
| funcs: List of TensorFlow ConcreteFunctions. The list should not contain
| duplicate elements.
| trackable_obj: tf.AutoTrackable object associated with `funcs`. A
| reference to this object needs to be maintained so that Variables do not
| get garbage collected since functions have a weak reference to
| Variables. This is only required when the tf.AutoTrackable object is not
| maintained by the user (e.g. `from_saved_model`).
|
| convert(self)
| Converts a TensorFlow GraphDef based on instance variables.
|
| Returns:
| The converted data in serialized format.
|
| Raises:
| ValueError:
| Multiple concrete functions are specified.
| Input shape is not specified.
| Invalid quantization parameters.
|
| ----------------------------------------------------------------------
| Class methods defined here:
|
| from_concrete_functions(funcs) from builtins.type
| Creates a TFLiteConverter object from ConcreteFunctions.
|
| Args:
| funcs: List of TensorFlow ConcreteFunctions. The list should not contain
| duplicate elements.
|
| Returns:
| TFLiteConverter object.
|
| Raises:
| Invalid input type.
|
| from_keras_model(model) from builtins.type
| Creates a TFLiteConverter object from a Keras model.
|
| Args:
| model: tf.Keras.Model
|
| Returns:
| TFLiteConverter object.
|
| from_saved_model(saved_model_dir, signature_keys=None, tags=None) from builtins.type
| Creates a TFLiteConverter object from a SavedModel directory.
|
| Args:
| saved_model_dir: SavedModel directory to convert.
| signature_keys: List of keys identifying SignatureDef containing inputs
| and outputs. Elements should not be duplicated. By default the
| `signatures` attribute of the MetaGraphdef is used. (default
| saved_model.signatures)
| tags: Set of tags identifying the MetaGraphDef within the SavedModel to
| analyze. All tags in the tag set must be present. (default set(SERVING))
|
| Returns:
| TFLiteConverter object.
|
| Raises:
| Invalid signature keys.
|
| ----------------------------------------------------------------------
| Data descriptors inherited from TFLiteConverterBase:
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)
问题:
使用tf_saved_model中生成mobilenet网络模型转换成tfLite能够成功,为什么使用另一个设计的模型进行转换却出现问题了呢??
Traceback (most recent call last):
File "pb2tflite.py", line , in <module>
tflite_model = converter.convert()
File "~/.local/lib/python3.7/site-packages/tensorflow_core/lite/python/lite.py", line , in convert
"invalid shape '{1}'.".format(_get_tensor_name(tensor), shape_list))
ValueError: None is only supported in the 1st dimension. Tensor 'images' has invalid shape '[None, None, None, None]'.
facebox模型节点:
(tf_test) ~/workspace/test_code/github_test/faceboxes-tensorflow$ saved_model_cli show --dir model/detector/ --all MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs: signature_def['__saved_model_init_op']:
The given SavedModel SignatureDef contains the following input(s):
The given SavedModel SignatureDef contains the following output(s):
outputs['__saved_model_init_op'] tensor_info:
dtype: DT_INVALID
shape: unknown_rank
name: NoOp
Method name is: signature_def['serving_default']:
The given SavedModel SignatureDef contains the following input(s):
inputs['images'] tensor_info:
dtype: DT_FLOAT
shape: (-, -, -, -)
name: serving_default_images:
The given SavedModel SignatureDef contains the following output(s):
outputs['boxes'] tensor_info:
dtype: DT_FLOAT
shape: (-, , )
name: StatefulPartitionedCall:
outputs['num_boxes'] tensor_info:
dtype: DT_INT32
shape: (-)
name: StatefulPartitionedCall:
outputs['scores'] tensor_info:
dtype: DT_FLOAT
shape: (-, )
name: StatefulPartitionedCall:
Method name is: tensorflow/serving/predict
mobilenet的模型节点
~/workspace/test_code/github_test/faceboxes-tensorflow/mobilenet$ saved_model_cli show --dir ./ --all MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs: signature_def['__saved_model_init_op']:
The given SavedModel SignatureDef contains the following input(s):
The given SavedModel SignatureDef contains the following output(s):
outputs['__saved_model_init_op'] tensor_info:
dtype: DT_INVALID
shape: unknown_rank
name: NoOp
Method name is: signature_def['serving_default']:
The given SavedModel SignatureDef contains the following input(s):
inputs['input_1'] tensor_info:
dtype: DT_FLOAT
shape: (-, , , )
name: serving_default_input_1:
The given SavedModel SignatureDef contains the following output(s):
outputs['act_softmax'] tensor_info:
dtype: DT_FLOAT
shape: (-, )
name: StatefulPartitionedCall:
Method name is: tensorflow/serving/predict
得到大神指点,tflite是静态图,需要指定hwc的值,在此谢过,那么问题来了,怎么指定hwc呢?
import tensorflow as tf
saved_model_dir = './model/detector/'
model = tf.saved_model.load(saved_model_dir)
concrete_func = model.signatures[tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY]
concrete_func.inputs[0].set_shape([1, 512, 512, 3])
converter = tf.lite.TFLiteConverter.from_concrete_functions([concrete_func])
# converter.experimental_new_converter = True
tflite_model = converter.convert()
open('model_tflite_facebox.tflite', 'wb').write(tflite_model)
error
Some of the operators in the model are not supported by the standard TensorFlow Lite runtime. If those are native TensorFlow operators, you might be able to use the extended runtime by passing --enable_select_tf_ops, or by setting target_ops=TFLITE_BUILTINS,SELECT_TF_OPS when calling tf.lite.TFLiteConverter(). Otherwise, if you have a custom implementation for them you can disable this error with --allow_custom_ops, or by setting allow_custom_ops=True when calling tf.lite.TFLiteConverter(). Here is a list of builtin operators you are using: ADD, AVERAGE_POOL_2D, CONCATENATION, CONV_2D, MAXIMUM, MINIMUM, MUL, NEG, PACK, RELU, RESHAPE, SOFTMAX, STRIDED_SLICE, SUB, UNPACK. Here is a list of operators for which you will need custom implementations: TensorListFromTensor, TensorListReserve, TensorListStack, While.
TensorFlow Lite 已经内置了很多运算符,并且还在不断扩展,但是仍然还有一部分 TensorFlow 运算符没有被 TensorFlow Lite 原生支持。这些不被支持的运算符会给 TensorFlow Lite 的模型转换带来一些阻力。
import tensorflow as tf
saved_model_dir = './model/detector/'
model = tf.saved_model.load(saved_model_dir)
concrete_func = model.signatures[tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY]
concrete_func.inputs[0].set_shape([1, 512, 512, 3])
converter = tf.lite.TFLiteConverter.from_concrete_functions([concrete_func])
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS, tf.lite.OpsSet.SELECT_TF_OPS]
# converter.experimental_new_converter = True
tflite_model = converter.convert()
open('model_tflite_facebox.tflite', 'wb').write(tflite_model)
还是有点问题。。。
参考
2. stackoverflow_how-to-create-a-tflite-file-from-saved-model-ssd-mobilenet;
3. tfv1-模型文件转换;
5. tf_saved_model;
8. ops_select;
完
【tensorflow-v2.0】如何将模型转换成tflite模型的更多相关文章
- 「新手必看」Python+Opencv实现摄像头调用RGB图像并转换成HSV模型
在ROS机器人的应用开发中,调用摄像头进行机器视觉处理是比较常见的方法,现在把利用opencv和python语言实现摄像头调用并转换成HSV模型的方法分享出来,希望能对学习ROS机器人的新手们一点帮助 ...
- 三分钟快速上手TensorFlow 2.0 (中)——常用模块和模型的部署
本文学习笔记参照来源:https://tf.wiki/zh/basic/basic.html 前文:三分钟快速上手TensorFlow 2.0 (上)——前置基础.模型建立与可视化 tf.train. ...
- TensorFlow v2.0实现逻辑斯谛回归
使用TensorFlow v2.0实现逻辑斯谛回归 此示例使用简单方法来更好地理解训练过程背后的所有机制 MNIST数据集概览 此示例使用MNIST手写数字.该数据集包含60,000个用于训练的样本和 ...
- 利用反射将Datatable、SqlDataReader转换成List模型
1. DataTable转IList public class DataTableToList<T>whereT :new() { ///<summary> ///利用反射将D ...
- h5模型文件转换成pb模型文件
本文主要记录Keras训练得到的.h5模型文件转换成TensorFlow的.pb文件 #*-coding:utf-8-* """ 将keras的.h5的模型文件,转换 ...
- 三分钟快速上手TensorFlow 2.0 (上)——前置基础、模型建立与可视化
本文学习笔记参照来源:https://tf.wiki/zh/basic/basic.html 学习笔记类似提纲,具体细节参照上文链接 一些前置的基础 随机数 tf.random uniform(sha ...
- 使用TensorFlow v2.0构建多层感知器
使用TensorFlow v2.0构建一个两层隐藏层完全连接的神经网络(多层感知器). 这个例子使用低级方法来更好地理解构建神经网络和训练过程背后的所有机制. 神经网络概述 MNIST 数据集概述 此 ...
- 使用TensorFlow v2.0构建卷积神经网络
使用TensorFlow v2.0构建卷积神经网络. 这个例子使用低级方法来更好地理解构建卷积神经网络和训练过程背后的所有机制. CNN 概述 MNIST 数据集概述 此示例使用手写数字的MNIST数 ...
- TensorFlow v2.0实现Word2Vec算法
使用TensorFlow v2.0实现Word2Vec算法计算单词的向量表示,这个例子是使用一小部分维基百科文章来训练的. 更多信息请查看论文: Mikolov, Tomas et al. " ...
随机推荐
- 第六篇 -- LINQ to XML
一.LINQ to XML常用成员 LINQ to XML的成员, 属性列表: 属性 说明 Document 获取此 XObject 的 XDocument EmptySequence 获取空的元 ...
- KVM管理工具
Ovirt:功能强大,RHEV的开源版本 WebVirtMgr:virt-manager的WEB模式的替代品 ConVirt:分为开源版.商业版 Openstack:开源框架,复杂程度较高
- 【大数据】设置SSH免密钥(转)
设置SSH免密钥 关于ssh免密码的设置,要求每两台主机之间设置免密码,自己的主机与自己的主机之间也要求设置免密码. 这项操作可以在admin用户下执行,执行完毕公钥在/home/admin/.ssh ...
- Sitemap Error : XML declaration allowed only at the start of the document解决方法
今天ytkah的客户反馈说他的xml网站地图有问题,提示Sitemap Error : XML declaration allowed only at the start of the documen ...
- Mobx | 强大的状态管理工具 | 可以用Mobx来替代掉redux
来源简书 电梯直达 https://www.jianshu.com/p/505d9d9fe36a Mobx是一个功能强大,上手非常容易的状态管理工具.就连redux的作者也曾经向大家推荐过它,在不少情 ...
- Generative Adversarial Networks overview(2)
Libo1575899134@outlook.com Libo (原创文章,转发请注明作者) 本文章会先从Gan的简单应用示例讲起,从三个方面问题以及解决思路覆盖25篇GAN论文,第二个大部分会进一步 ...
- @EnableFeignClients 客户端详细
在Spring cloud应用中,当我们要使用feign客户端时,一般要做以下三件事情 : 1.使用注解@EnableFeignClients启用feign客户端: 示例 : @SpringBootA ...
- Laravel 自定义公共函数全局使用,并设置自定加载
开发中经常定义一些公共函数(如:获取用户信息.csv导入导出等常用函数),方便控制层,模型层调用. 那么在Laravle框架中怎么使用? 方法如下: 1.在根目录app下新建公共目录Library/U ...
- yolov3
YOLOv3没有太多的创新,主要是借鉴一些好的方案融合到YOLO里面.不过效果还是不错的,在保持速度优势的前提下,提升了预测精度,尤其是加强了对小物体的识别能力(yolov1在这方面是有缺陷的). 本 ...
- [AGC007E] Shik and Travel
题目 给定一棵n节点的 以1为根的 满二叉树 (每个非叶子节点恰好有两个儿子)n−1 条边. 第ii条边连接 i+1号点 和 ai, 经过代价为vi设这棵树有m个叶子节点定义一次合法的旅行为:(1) ...