题意:有一个长度为n的字符串,每一位只会是p或j。你需要取出一个子串S(注意不是子序列),使得该子串不管是从左往右还是从右往左取,都保证每时每刻已取出的p的个数不小于j的个数。如果你的子串是最长的,那么称之为完美字符子串。求完美字符子串的长度。

乍一看比较水,然而差点没想出来。

考虑处理前缀和,p+1 j-1 那么对于一段区间[l,r]只要每一个i∈[l,r]满足presum[i]-presum[l-1]>=0即满足题意

1.单调队列预处理每个位置向前/后走的最远位置 记为f[i]/g[i]

2.枚举区间的左端点L,那么对于所有R∈[i,f[i]]找到最靠右的R满足g[R]<=i

3.R何可以通过向右移动cur优化,查找R可以用线段树优化

Code:

#include <bits/stdc++.h>
using namespace std; const int MAXN = 1000005; int n, f[MAXN], g[MAXN], sum1[MAXN], sum2[MAXN];
char s[MAXN];
int cnt, st[MAXN]; void solve1()
{
for(int i = 1; i <= n; i++)
if(s[i] == 'p') st[++cnt] = i;
else
{
while(cnt && sum1[st[cnt]] - sum1[i] > 1)
f[st[cnt--]] = i-1;
}
while(cnt) f[st[cnt--]] = n;
} void solve2()
{
for(int i = n; i >= 1; i--)
if(s[i] == 'p') st[++cnt] = i;
else
{
while(cnt && sum2[st[cnt]] - sum2[i] > 1)
g[st[cnt--]] = i+1;
}
while(cnt) g[st[cnt--]] = 1;
} int mn[MAXN*4]; void build(int i, int l, int r)
{
if(l == r)
{
mn[i] = (g[l] == 0) ? 0x7f7f7f7f : g[l];
return;
}
int mid = (l + r) >> 1;
build(i*2, l, mid);
build(i*2+1, mid+1, r);
mn[i] = min(mn[i*2], mn[i*2+1]);
} int find(int i, int l, int r, int x, int y, int k)
{
if(y < l || x > r || mn[i] > k) return -1;
if(l == r) return mn[i] <= k ? l : -1;
int mid = (l + r) >> 1;
int tmp = find(i*2+1, mid+1, r, x, y, k);
if(tmp != -1) return tmp;
return find(i*2, l, mid, x, y, k);
} int main ()
{
scanf("%d%s", &n, s+1);
for(int i = 1; i <= n; i++)
sum1[i] = sum1[i-1] + (s[i] == 'p' ? 1 : -1);
solve1();
for(int i = n; i >= 1; i--)
sum2[i] = sum2[i+1] + (s[i] == 'p' ? 1 : -1);
solve2();
build(1, 1, n); int cur = 1, Ans = 0;
for(int i = 1; i <= n; i++) if(f[i])
{
int pos = find(1, 1, n, cur=max(cur, i), f[i], i);
if(pos == -1) continue;
Ans = max(Ans, pos - i + 1); cur = pos+1;
}
printf("%d\n", Ans);
}

完美字符子串 单调队列预处理+DP线段树优化的更多相关文章

  1. [USACO2005][POJ3171]Cleaning Shifts(DP+线段树优化)

    题目:http://poj.org/problem?id=3171 题意:给你n个区间[a,b],每个区间都有一个费用c,要你用最小的费用覆盖区间[M,E] 分析:经典的区间覆盖问题,百度可以搜到这个 ...

  2. HDU4719-Oh My Holy FFF(DP线段树优化)

    Oh My Holy FFF Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) T ...

  3. UVA-1322 Minimizing Maximizer (DP+线段树优化)

    题目大意:给一个长度为n的区间,m条线段序列,找出这个序列的一个最短子序列,使得区间完全被覆盖. 题目分析:这道题不难想,定义状态dp(i)表示用前 i 条线段覆盖区间1~第 i 线段的右端点需要的最 ...

  4. zoj 3349 dp + 线段树优化

    题目:给出一个序列,找出一个最长的子序列,相邻的两个数的差在d以内. /* 线段树优化dp dp[i]表示前i个数的最长为多少,则dp[i]=max(dp[j]+1) abs(a[i]-a[j])&l ...

  5. 【uva1502/hdu4117-GRE Words】DP+线段树优化+AC自动机

    这题我的代码在hdu上AC,在uva上WA. 题意:按顺序输入n个串以及它的权值di,要求在其中选取一些串,前一个必须是后一个的子串.问d值的和最大是多少. (1≤n≤2×10^4 ,串的总长度< ...

  6. Contest20140906 ProblemA dp+线段树优化

    Problem A 内存限制 256MB 时间限制 5S 程序文件名 A.pas/A.c/A.cpp 输入文件 A.in 输出文件 A.out 你有一片荒地,为了方便讨论,我们将这片荒地看成一条直线, ...

  7. POJ 3171.Cleaning Shifts-区间覆盖最小花费-dp+线段树优化(单点更新、区间查询最值)

    Cleaning Shifts Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4721   Accepted: 1593 D ...

  8. JZOJ 4738. 神在夏至祭降下了神谕 DP + 线段树优化

    4738. 神在夏至祭降下了神谕 Time Limits: 1000 ms  Memory Limits: 262144 KB  Detailed Limits   Goto ProblemSet D ...

  9. hdu3698 Let the light guide us dp+线段树优化

    http://acm.hdu.edu.cn/showproblem.php?pid=3698 Let the light guide us Time Limit: 5000/2000 MS (Java ...

随机推荐

  1. 常用Tables控件介绍(一)

    1.DataTables Datatables是一款jquery表格插件.它是一个高度灵活的工具,可以将任何HTML表格添加高级的交互功能. 分页,即时搜索和排序 几乎支持任何数据源:DOM, jav ...

  2. 【LEETCODE】45、766. Toeplitz Matrix

    package y2019.Algorithm.array; /** * @ProjectName: cutter-point * @Package: y2019.Algorithm.array * ...

  3. 10分钟用scratch写一个大鱼吃小鱼的小游戏

    第一次给张江小朋友教Scratch课程之前,还在担心一些概念能不能向小朋友解释清楚,可上完课发现,我严重低估了小朋友的聪明程度,发现现在的孩子相比较自己8.9岁的时候,简直聪明太多倍了. 所以总结了半 ...

  4. LOJ6300 博弈论与概率统计 组合、莫队

    传送门 如果在\(0\)以下之后仍然会减分,那么最后的结果一定是\(N-M\). 注意到如果在Alice分数为\(0\)时继续输,那么就相当于减少了一次输的次数.也就是说如果说在总的博弈过程中,Ali ...

  5. 手写RPC框架(netty+zookeeper)

    RPC是什么?远程过程调用,过程就是业务处理.计算任务,像调用本地方法一样调用远程的过程. RMI和RPC的区别是什么?RMI是远程方法调用,是oop领域中RPC的一种实现,我们熟悉的restfull ...

  6. 正则表达式"(^|&)" ,什么意思?

    ^匹配字符串开头,&就是&字符 (^|&)匹配字符串开头或者&字符,如果其后还有正则,那么必须出现在字符串开始或&字符之后 用法一:   限定开头 文档上给出了 ...

  7. 【转载】C#中通过Distinct方法对List集合进行去重

    在C#的List集合对象中,可以使用Distinct方法来对List集合元素进行去重,如果list集合内部元素为值类型,则Distinct方法根据值类型是否相等来判断去重,如果List集合内部元素为引 ...

  8. TR-业务流程图

    今天看到一篇关于票据业务的培训文档,介绍比较全面,分享下: https://wenku.baidu.com/view/f3dd3ee988eb172ded630b1c59eef8c75ebf9577. ...

  9. Fortify漏洞之Dynamic Code Evaluation: Code Injection(动态脚本注入)和 Password Management: Hardcoded Password(密码硬编码)

    继续对Fortify的漏洞进行总结,本篇主要针对  Dynamic Code Evaluation: Code Injection(动态脚本注入) 和 Password Management: Har ...

  10. 简单了解Django应用app及分布式路由

    前言 应用在Django的项目中是一个独立的业务模块,可以包含自己的路由,视图,模板,模型. 一 创建应用程序 创建步骤 用manage.py中的子命令startapp创建应用文件夹 在setting ...