测度(Measure)
测度概述
数学上,测度(Measure)是一个函数,它对一个给定集合的某些子集指定一个数,这个数可以比作大小、体积、概率等等。传统的积分是在区间上进行的,后来人们希望把积分推广到任意的集合上,就发展出测度的概念,它在数学分析和概率论有重要的地位。
测度论是实分析的一个分支,研究对象有σ代数、测度、可测函数和积分,其重要性在概率论和统计学中有所体现的。
测度的定义
形式上说,一个测度(详细的说法是可列可加的正测度)是个函数。设
是集合
上的一个σ代数,
在上
定义,于扩充区间
中取值,并且满足以下性质:
- 空集的测度为零:
-
。
- 可数可加性,或称σ可加性:若
为
中可数个两两不交的集合的序列,则所有
的并集的测度,等于每个
的测度之总和:
-
。
这样的三元组称为一个测度空间,而
中的元素称为这个空间中的可测集。
测度的性质
下面的一些性质可从测度的定义导出:
单调性
测度的单调性:
若和
为可测集,而且
,则
。
可数个可测集的并集的测度
若 为可测集(不必是两两不交的),并且对于所有的
,
⊆
,则集合
的并集是可测的,且有如下不等式(「次可列可加性」):
以及如下极限:
可数个可测集的交集的测度
若 为可测集,并且对于所有的
,
⊆
,则
的交集是可测的。进一步说,如果至少一个
的测度有限,则有极限:
如若不假设至少一个的测度有限,则上述性质一般不成立。例如对于每一个
,令
这里,全部集合都具有无限测度,但它们的交集是空集。
σ有限测度
如果是一个有限实数(而不是
),则测度空间
称为有限测度空间。如果
可以表示为可数个可测集的并集,而且这些可测集的测度均有限,则该测度空间称为σ有限测度空间。称测度空间中的一个集合
具有σ有限测度,如果
可以表示为可数个可测集的并集,而且这些可测集的测度均有限。
作为例子,实数集赋以标准勒贝格测度是σ有限的,但不是有限的。为说明之,只要考虑闭区间族[k, k+1],k 取遍所有的整数;这样的区间共有可数多个,每一个的测度为1,而且并起来就是整个实数集。作为另一个例子,取实数集上的计数测度,即对实数集的每个有限子集,都把元素个数作为它的测度,至于无限子集的测度则令为。这样的测度空间就不是σ有限的,因为任何有限测度集只含有有限个点,从而,覆盖整个实数轴需要不可数个有限测度集。σ有限的测度空间有些很好的性质;从这点上说,σ有限性可以类比于拓扑空间的可分性。
完备性
一个可测集称为零测集,如果
。零测集的子集称为可去集,它未必是可测的,但零测集自然是可去集。如果所有的可去集都可测,则称该测度为完备测度。
一个测度可以按如下的方式延拓为完备测度:考虑的所有这样的子集
,它与某个可测集
仅差一个可去集,也就是说
与
的对称差包含于一个零测集中。由这些子集
生成的σ代数,并定义
的值就等于
。
例子
下列是一些测度的例子(重要性与顺序无关)。
- 计数测度 定义为
的‘元素个数’。
- 一维勒贝格测度 是定义在
的一个含所有区间的σ代数上的、完备的、平移不变的、满足
的唯一测度。
- Circular angle 测度 是旋转不变的。
- 局部紧拓扑群上的哈尔测度是勒贝格测度的一种推广,而且也有类似的刻划。
- 恆零测度 定义为
,对任意的
。
- 每一个概率空间都有一个测度,它对全空间取值为1(于是其值全部落到单位区间[0,1]中)。这就是所谓概率测度。
- 其它例子,包括:狄拉克测度、波莱尔测度、若尔当测度、遍历测度、欧拉测度、高斯测度、贝尔测度、拉东测度。
测度(Measure)的更多相关文章
- [实变函数]3.1 外测度 (outer measure)
1 并不是所有的集合都可求测度. 我们的想法是先对 $\bbR^n$ 中的任一集合定义一个``外 测度'' (outer measure), 然后再加上适当的条件 (Caratheodory 条件), ...
- 深度学习-Wasserstein GAN论文理解笔记
GAN存在问题 训练困难,G和D多次尝试没有稳定性,Loss无法知道能否优化,生成样本单一,改进方案靠暴力尝试 WGAN GAN的Loss函数选择不合适,使模型容易面临梯度消失,梯度不稳定,优化目标不 ...
- 测度论--长度是怎样炼成的[zz]
http://www.58pic.com/newpic/27882296.html http://www.58pic.com/newpic/27893137.html http://699pic.co ...
- An Introduction to Measure Theory and Probability
目录 Chapter 1 Measure spaces Chapter 2 Integration Chapter 3 Spaces of integrable functions Chapter 4 ...
- Android measure过程分析
作为一名Android开发人员,我们都知道一个View从无到有,会经历3个阶段: 1. measure/测量阶段,也就是确定某个view大小的过程: 2. layout/布局阶段,也就是确定其左上右下 ...
- \(\S1 \) Gaussian Measure and Hermite Polynomials
Define on \(\mathbb{R}^d\) the normalized Gaussian measure\[ d \gamma(x)=\frac{1}{(2\pi)^{\frac{d}{2 ...
- 通过Measure & Arrange实现UWP瀑布流布局
简介 在以XAML为主的控件布局体系中,有用于完成布局的核心步骤,分别是measure和arrange.继承体系中由UIElement类提供Measure和Arrange方法,并由其子类Framewo ...
- 普通View的measure流程
对于普通的view,其测量在ViewGroup中的measureChildWithMargins函数中调用child view的measure开始测量. 1:从measure函数开始 public f ...
- [CareerCup] 16.2 Measure Time in a Context Switch 测量上下文转换的时间
16.2 How would you measure the time spent in a context switch? 上下文转换发生在两个进程之间,比如让一个等待进程进入执行和让一个运行进程进 ...
随机推荐
- 方法型混淆js代码
const fs = require('fs'); const acorn = require('acorn'); const walk = require("acorn-walk" ...
- Google Dremel架构
Dremel 是Google 的“交互式”数据分析系统.Google开发了Dremel将处理时间缩短到秒级,作为MapReduce的有力补充.Apache推出Dremel的开源实现Drill,将Dre ...
- 一个半吊子PM的反思
故事之源 2019年3月,也就是2016级计算机学院的大三时,软件工程这门课程由选修转为专业必修课,而七个葫芦娃共聚罗杰老师的课堂,组成葫芦娃不想写代码小分队.面临着继承往届项目.完成指定项目和自选项 ...
- docker port is already allocated 的解决方案
ps -aux | grep -v grep | grep docker-proxy 第二列为进程号 停止 doker 进程,删除所有容器,然后删除 local-kv.db 这个文件,再启动 dock ...
- SpringBoot(十七):SpringBoot2.1.1数据类型转化器Converter
什么场景下需要使用类型化器Converter? springboot2.1.1在做Restful Api开发过程中往往希望接口直接接收date类型参数,但是默认不加设置是不支持的,会抛出异常:系统是希 ...
- vue-router踩坑日记Unknown custom element router-view
今天笔者在研究vue-router的时候踩到了一个小坑,这个坑是这样的 笔者的具体代码如下:router.js import Home from '@/components/Home.vue'; im ...
- pg数据库中时间查询的方式
方法一:select * from user_info where create_date>= '2015-07-01' and create_date < '2015-08-15'; 方 ...
- github将本地仓库的代码上传到Github
本篇主要参考博文:https://blog.csdn.net/IT_faquir/article/details/52516214 你要先完成上一篇的操作,即将代码上传到本地仓库中,才能上传到gith ...
- Xamarin.FormsShell基础教程(7)Shell项目关于页面的介绍
Xamarin.FormsShell基础教程(7)Shell项目关于页面的介绍 轻拍标签栏中的About标签,进入关于页面,如图1.8和图1.9所示.它是对应用程序介绍的页面. 该页面源自Views文 ...
- Java13新特性 -- 文本块
在JDK 12中引入了Raw String Literals特性,但在发布之前就放弃了.这个JEP与引入多行字符串文字(text block) 在意义上是类似的. 这条新特性跟 Kotlin 里的文本 ...