测度(Measure)
测度概述
数学上,测度(Measure)是一个函数,它对一个给定集合的某些子集指定一个数,这个数可以比作大小、体积、概率等等。传统的积分是在区间上进行的,后来人们希望把积分推广到任意的集合上,就发展出测度的概念,它在数学分析和概率论有重要的地位。
测度论是实分析的一个分支,研究对象有σ代数、测度、可测函数和积分,其重要性在概率论和统计学中有所体现的。
测度的定义
形式上说,一个测度
(详细的说法是可列可加的正测度)是个函数。设
是集合
上的一个σ代数,
在上
定义,于扩充区间
中取值,并且满足以下性质:
- 空集的测度为零:
-
。
- 可数可加性,或称σ可加性:若
为
中可数个两两不交的集合的序列,则所有
的并集的测度,等于每个
的测度之总和:
-
。
这样的三元组
称为一个测度空间,而
中的元素称为这个空间中的可测集。
测度的性质
下面的一些性质可从测度的定义导出:
单调性
测度
的单调性:
若
和
为可测集,而且
,则
。
可数个可测集的并集的测度
若
为可测集(不必是两两不交的),并且对于所有的
,
⊆
,则集合
的并集是可测的,且有如下不等式(「次可列可加性」):
以及如下极限:
可数个可测集的交集的测度
若
为可测集,并且对于所有的
,
⊆
,则
的交集是可测的。进一步说,如果至少一个
的测度有限,则有极限:
如若不假设至少一个
的测度有限,则上述性质一般不成立。例如对于每一个
,令
这里,全部集合都具有无限测度,但它们的交集是空集。
σ有限测度
如果
是一个有限实数(而不是
),则测度空间
称为有限测度空间。如果
可以表示为可数个可测集的并集,而且这些可测集的测度均有限,则该测度空间称为σ有限测度空间。称测度空间中的一个集合
具有σ有限测度,如果
可以表示为可数个可测集的并集,而且这些可测集的测度均有限。
作为例子,实数集赋以标准勒贝格测度是σ有限的,但不是有限的。为说明之,只要考虑闭区间族[k, k+1],k 取遍所有的整数;这样的区间共有可数多个,每一个的测度为1,而且并起来就是整个实数集。作为另一个例子,取实数集上的计数测度,即对实数集的每个有限子集,都把元素个数作为它的测度,至于无限子集的测度则令为
。这样的测度空间就不是σ有限的,因为任何有限测度集只含有有限个点,从而,覆盖整个实数轴需要不可数个有限测度集。σ有限的测度空间有些很好的性质;从这点上说,σ有限性可以类比于拓扑空间的可分性。
完备性
一个可测集
称为零测集,如果
。零测集的子集称为可去集,它未必是可测的,但零测集自然是可去集。如果所有的可去集都可测,则称该测度为完备测度。
一个测度可以按如下的方式延拓为完备测度:考虑
的所有这样的子集
,它与某个可测集
仅差一个可去集,也就是说
与
的对称差包含于一个零测集中。由这些子集
生成的σ代数,并定义
的值就等于
。
例子
下列是一些测度的例子(重要性与顺序无关)。
- 计数测度 定义为
的‘元素个数’。 - 一维勒贝格测度 是定义在
的一个含所有区间的σ代数上的、完备的、平移不变的、满足
的唯一测度。 - Circular angle 测度 是旋转不变的。
- 局部紧拓扑群上的哈尔测度是勒贝格测度的一种推广,而且也有类似的刻划。
- 恆零测度 定义为
,对任意的
。 - 每一个概率空间都有一个测度,它对全空间取值为1(于是其值全部落到单位区间[0,1]中)。这就是所谓概率测度。
- 其它例子,包括:狄拉克测度、波莱尔测度、若尔当测度、遍历测度、欧拉测度、高斯测度、贝尔测度、拉东测度。
测度(Measure)的更多相关文章
- [实变函数]3.1 外测度 (outer measure)
1 并不是所有的集合都可求测度. 我们的想法是先对 $\bbR^n$ 中的任一集合定义一个``外 测度'' (outer measure), 然后再加上适当的条件 (Caratheodory 条件), ...
- 深度学习-Wasserstein GAN论文理解笔记
GAN存在问题 训练困难,G和D多次尝试没有稳定性,Loss无法知道能否优化,生成样本单一,改进方案靠暴力尝试 WGAN GAN的Loss函数选择不合适,使模型容易面临梯度消失,梯度不稳定,优化目标不 ...
- 测度论--长度是怎样炼成的[zz]
http://www.58pic.com/newpic/27882296.html http://www.58pic.com/newpic/27893137.html http://699pic.co ...
- An Introduction to Measure Theory and Probability
目录 Chapter 1 Measure spaces Chapter 2 Integration Chapter 3 Spaces of integrable functions Chapter 4 ...
- Android measure过程分析
作为一名Android开发人员,我们都知道一个View从无到有,会经历3个阶段: 1. measure/测量阶段,也就是确定某个view大小的过程: 2. layout/布局阶段,也就是确定其左上右下 ...
- \(\S1 \) Gaussian Measure and Hermite Polynomials
Define on \(\mathbb{R}^d\) the normalized Gaussian measure\[ d \gamma(x)=\frac{1}{(2\pi)^{\frac{d}{2 ...
- 通过Measure & Arrange实现UWP瀑布流布局
简介 在以XAML为主的控件布局体系中,有用于完成布局的核心步骤,分别是measure和arrange.继承体系中由UIElement类提供Measure和Arrange方法,并由其子类Framewo ...
- 普通View的measure流程
对于普通的view,其测量在ViewGroup中的measureChildWithMargins函数中调用child view的measure开始测量. 1:从measure函数开始 public f ...
- [CareerCup] 16.2 Measure Time in a Context Switch 测量上下文转换的时间
16.2 How would you measure the time spent in a context switch? 上下文转换发生在两个进程之间,比如让一个等待进程进入执行和让一个运行进程进 ...
随机推荐
- BigDecimal代码示例
在平常开发中,如果涉及到计算,要求准确的精度,比如单价*数量=总价之类的计算,那么得用到BigDecimal. 初始化 如下: BigDecimal amount=new BigDecimal(&qu ...
- 解决vue项目路由出现message: "Navigating to current location (XXX) is not allowed"的问题(点击多次跳转)
如果网页跳转用的方法传参去跳转: (点击多次链接会出现错误) <a class="" href="javascript:void(0);" @click= ...
- Research Guide: Pruning Techniques for Neural Networks
Research Guide: Pruning Techniques for Neural Networks 2019-11-15 20:16:54 Original: https://heartbe ...
- 【深入学习linux】CentOS 7 最小化安装后的注意事项及一些必备组件的安装
转载:https://blog.csdn.net/F_Srion/article/details/54910943 在VM虚拟机中安装CentOS 7 时 有时候顾虑到电脑硬件性能,我们需要最小化安装 ...
- 使用Flume-Taildir和rocketmq-flume与RocketMQ的结合
一.Fume-Taidir Flume1.7.0加入了taildirSource作为agent的source.可以说是 Spooling Directory Source + Exec Source ...
- Des加解密工具
import java.security.Key; import java.security.Security; import java.util.Date; import javax.crypto. ...
- CocosCreator TypeScript项目 (vscode 设置中文,默认调试环境设置)
版本:2.2.1 深圳好多公司用的cocoscreator,学习一下. 这篇是如何安装,然后运行一个hello world. 一 下载 cocoscreator:https://www.cocos. ...
- OpenStack(一)——OpenStack的相关概念
(1).OpenStack概述 OpenStack是一个由NASA(美国国家航空航天局)和Rackspace合作研发并发起的,以Apache许可证授权的自由软件和开放源代码项目. OpenStack是 ...
- es查询示例
1. 建立连接 from elasticsearch import Elasticsearch es = Elasticsearch(["localhost:9200"]) 2. ...
- SAP翔子_增强篇索引
序号 描述 SAP翔子_增强篇0 增强篇0 SAP的多种增强方式 SAP翔子_增强篇1 增强篇1 PO保存增强 SAP翔子_增强篇2 增强篇2 生产订单屏幕增强 SAP翔子_增强篇3 增强篇3 SAP ...



