定位为轻量级Java框架,在Java的JDBC层提供的额外服务。 它使用客户端直连数据库,以jar包形式提供服务,无需额外部署和依赖,可理解为增强版的JDBC驱动,完全兼容JDBC和各种ORM框架。

  • 适用于任何基于JDBC的ORM框架,如:JPA, Hibernate, Mybatis, Spring JDBC Template或直接使用JDBC。
  • 支持任何第三方的数据库连接池,如:DBCP, C3P0, BoneCP, Druid, HikariCP等。
  • 支持任意实现JDBC规范的数据库。目前支持MySQL,Oracle,SQLServer,PostgreSQL以及任何遵循SQL92标准的数据库。

配置说明

#### 常用配置

spring.shardingsphere.datasource.names= #数据源名称,多数据源以逗号分隔

spring.shardingsphere.sharding.tables.<logic-table-name>.actual-data-nodes= #由数据源名 + 表名组成,以小数点分隔。多个表以逗号分隔,支持inline表达式。缺省表示使用已知数据源与逻辑表名称生成数据节点。用于广播表(即每个库中都需要一个同样的表用于关联查询,多为字典表)或只分库不分表且所有库的表结构完全一致的情况

##### 分库策略,缺省表示使用默认分库策略,以下的分片策略只能选其一

##### 用于单分片键的标准分片场景
spring.shardingsphere.sharding.tables.<logic-table-name>.database-strategy.standard.sharding-column= #分片列名称
spring.shardingsphere.sharding.tables.<logic-table-name>.database-strategy.standard.precise-algorithm-class-name= #精确分片算法类名称,用于=和IN。该类需实现PreciseShardingAlgorithm接口并提供无参数的构造器
spring.shardingsphere.sharding.tables.<logic-table-name>.database-strategy.standard.range-algorithm-class-name= #范围分片算法类名称,用于BETWEEN,可选。该类需实现RangeShardingAlgorithm接口并提供无参数的构造器 ##### 用于多分片键的复合分片场景
spring.shardingsphere.sharding.tables.<logic-table-name>.database-strategy.complex.sharding-columns= #分片列名称,多个列以逗号分隔
spring.shardingsphere.sharding.tables.<logic-table-name>.database-strategy.complex.algorithm-class-name= #复合分片算法类名称。该类需实现ComplexKeysShardingAlgorithm接口并提供无参数的构造器 ##### 行表达式分片策略
spring.shardingsphere.sharding.tables.<logic-table-name>.database-strategy.inline.sharding-column= #分片列名称
spring.shardingsphere.sharding.tables.<logic-table-name>.database-strategy.inline.algorithm-expression= #分片算法行表达式,需符合groovy语法 ##### Hint分片策略
spring.shardingsphere.sharding.tables.<logic-table-name>.database-strategy.hint.algorithm-class-name= #Hint分片算法类名称。该类需实现HintShardingAlgorithm接口并提供无参数的构造器 ##### 分表策略,同分库策略
spring.shardingsphere.sharding.tables.<logic-table-name>.table-strategy.xxx= #省略 spring.shardingsphere.sharding.tables.<logic-table-name>.key-generator.column= #自增列名称,缺省表示不使用自增主键生成器
spring.shardingsphere.sharding.tables.<logic-table-name>.key-generator.type= #自增列值生成器类型,缺省表示使用默认自增列值生成器。可使用用户自定义的列值生成器或选择内置类型:SNOWFLAKE/UUID/LEAF_SEGMENT
spring.shardingsphere.sharding.tables.<logic-table-name>.key-generator.props.<property-name>= #属性配置, 注意:使用SNOWFLAKE算法,需要配置worker.id与max.tolerate.time.difference.milliseconds属性。若使用此算法生成值作分片值,建议配置max.vibration.offset属性 spring.shardingsphere.sharding.binding-tables[0]= #绑定表规则列表 spring.shardingsphere.sharding.broadcast-tables[0]= #广播表规则列表 spring.shardingsphere.sharding.default-data-source-name= #未配置分片规则的表将通过默认数据源定位
spring.shardingsphere.sharding.default-database-strategy.xxx= #默认数据库分片策略,同分库策略
spring.shardingsphere.sharding.default-table-strategy.xxx= #默认表分片策略,同分表策略
spring.shardingsphere.sharding.default-key-generator.type= #默认自增列值生成器类型,缺省将使用org.apache.shardingsphere.core.keygen.generator.impl.SnowflakeKeyGenerator。可使用用户自定义的列值生成器或选择内置类型:SNOWFLAKE/UUID/LEAF_SEGMENT
spring.shardingsphere.sharding.default-key-generator.props.<property-name>= #自增列值生成器属性配置, 比如SNOWFLAKE算法的worker.id与max.tolerate.time.difference.milliseconds spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.master-data-source-name= #详见读写分离部分
spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.slave-data-source-names[0]= #详见读写分离部分
spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.load-balance-algorithm-class-name= #详见读写分离部分
spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.load-balance-algorithm-type= #详见读写分离部分 spring.shardingsphere.props.sql.show= #是否开启SQL显示,默认值: false

分片实现原理

SQL解析 => 执行器优化 => SQL路由 => SQL改写 => SQL执行 => 结果归并

ShardingDataSourceFactory用于创建分库分表或分库分表+读写分离的JDBC驱动

MasterSlaveDataSourceFactory用于创建独立使用读写分离的JDBC驱动。

ShardingRuleConfiguration是分库分表配置的核心和入口,它可以包含多个TableRuleConfiguration和MasterSlaveRuleConfiguration。

每一组相同规则分片的表配置一个TableRuleConfiguration。如果需要分库分表和读写分离共同使用,每一个读写分离的逻辑库配置一个MasterSlaveRuleConfiguration。

每个TableRuleConfiguration对应一个ShardingStrategyConfiguration

分库分表标准

这里要说的是数据库切分确实可以解决数据库的单点问题,但是它也会带来整体服务切分后的数据库操作的复杂度.

  • 参考资料:

Sharding-JDBC:单库分表的实现

shardingsphere快速入门

demo码云地址

浅谈sharding jdbc的更多相关文章

  1. 浅谈了解JDBC

    目录 前言 作用 JDBC的架构 步骤 JDBC常见的关键字解释 前言 Java数据库连接,是Java语言中用来规范客户端程序如何来访问数据库的应用程序接口,提供了诸如查询和更新数据库中数据的方法.J ...

  2. 【架构】浅谈web网站架构演变过程

    浅谈web网站架构演变过程   前言 我们以javaweb为例,来搭建一个简单的电商系统,看看这个系统可以如何一步步演变.   该系统具备的功能:   用户模块:用户注册和管理 商品模块:商品展示和管 ...

  3. !! 浅谈Java学习方法和后期面试技巧

    浅谈Java学习方法和后期面试技巧 昨天查看3303回复33 部落用户大酋长 下面简单列举一下大家学习java的一个系统知识点的一些介绍 一.java基础部分:java基础的时候,有些知识点是非常重要 ...

  4. Hibernate更新部分字段浅谈

    update语句是在Hibernate的Configuration的时候生成的,不能动态改变.为什么update的时候所有的属性都一起update,而不是只更新改变字段,其实这是一个比较值得探讨的问题 ...

  5. [转]浅谈Hive vs. HBase 区别在哪里

    浅谈Hive vs. HBase 区别在哪里 导读:Apache Hive是一个构建于Hadoop(分布式系统基础架构)顶层的数据仓库,Apache HBase是运行于HDFS顶层的NoSQL(=No ...

  6. mongo 3.4分片集群系列之一:浅谈分片集群

    这篇为理论篇,稍后会有实践篇. 这个系列大致想跟大家分享以下篇章: 1.mongo 3.4分片集群系列之一:浅谈分片集群 2.mongo 3.4分片集群系列之二:搭建分片集群--哈希分片 3.mong ...

  7. 朱晔的互联网架构实践心得S2E6:浅谈高并发架构设计的16招

    朱晔的互联网架构实践心得S2E6:浅谈高并发架构设计的16招 概览 标题中的高并发架构设计是指设计一套比较合适的架构来应对请求.并发量很大的系统,使系统的稳定性.响应时间符合预期并且能在极端的情况下自 ...

  8. [转帖]浅谈分布式一致性与CAP/BASE/ACID理论

    浅谈分布式一致性与CAP/BASE/ACID理论 https://www.cnblogs.com/zhang-qc/p/6783657.html ##转载请注明 CAP理论(98年秋提出,99年正式发 ...

  9. 阿里P7浅谈SpringMVC

    一.前言 既然是浅谈 SpringMVC,那么我们就先从基础说起,本章节主要讲解以下内容: 1.三层结构介绍 2.MVC 设计模式介绍 3.SpringMVC 介绍 4.入门程序的实现 注:介绍方面的 ...

随机推荐

  1. 【CH1809】匹配统计(KMP)

    题目链接 摘自https://www.cnblogs.com/wyboooo/p/9829517.html 用KMP先求出以a[i]为结尾的前缀与b匹配的最长长度. 比如 f[i] = j,就表示a[ ...

  2. 【洛谷 P5341】 [TJOI2019]甲苯先生和大中锋的字符串(后缀自动机)

    题目链接 建出\(sam\),求出parent tree上每个点的\(endpos\)集合大小. 如果等于\(k\),说明到达这个点的都可以.给\((len[fa(i)],len[i]]\)的\(cn ...

  3. 某类继承thread,同时实现runnable

    package com.giserve.test; public class ThreadTest { public static void main(String[] args) { new Thr ...

  4. Swift之xib模块化设计

    一.解决问题 Xib/Storybarod可以方便.可视化的设置约束,在开发中也越来越重要.由于Xib不能组件化,使得封装.重用都变得不可行.本文将介绍一种解决方案,来实现Xib组件化. 二.模型块原 ...

  5. vue.js相关教程

    Vue.js——60分钟快速入门 http://www.cnblogs.com/keepfool/p/5619070.html

  6. 解决 Orange Pi 烧录完系统后剩余可用空间过少的问题

    输入命令 df -ha 这图是拿别人的 看到系统才使用3.2g,内存卡有16g,不可能满的. 执行命令,加上sudo,防止权限不够: sudo fs_resize 如果上面那个不行的话,试试这个命令( ...

  7. Mac 下 安装Python3

    因为Mac系统自带Python2.7 所以我们开发要重新装Python3 直接运行下面就好 luohaotiandeMacBook-Pro:~ luohaotian$ which python /us ...

  8. sqlalchemy之基础操作

    原文链接:https://www.cnblogs.com/DragonFire/p/10166527.html

  9. Graphviz install the Windows for Scyther

    1.在Pycharm 中使用Scyther工具的时候需要导入 graphviz 直接在 Interpreter 上安装的售后会报错,如果在 IDE上无法支架安装的库可以试图在控制台上安装,控制台上无法 ...

  10. ccze - A robust log colorizer(强大的日志着色器)

    这些程序遵循通常的GNU命令行语法,长选项以两个破折号(` - ')开头.选项摘要如下. -a, - argument PLUGIN = ARGUMENTS              使用此选项将AR ...