在深度学习领域中,最强力的理念之一就是可以将神经网络学习的一种知识应用到另一个独立的任务中。

看上面的例子,首先我们有一个已经完成训练的神经网络,其目标是图像识别,我们有了绿色的1000000张图片并训练了上面的网络。

在完成图像识别后,我们希望将我们的模型用于放射诊断任务,这就是一种迁移。

我们的做法是,把以及训练好的网络的输出层及其权重都删除掉,然后重新随机权重给最后一层,并且让它在放射诊断数据上进行训练。

在使用源数据进行训练的时候,我们把这一过程称为预训练pre-training,其目标是训练网络的各层参数。

在使用放射数据进行训练的时候,我们把这一过程称为微调fine tuning

迁移学习起到作用的场合往往在于,我们有许多的源数据,但只有少量的目标数据,如上图绿色数据。

但是如果我们有红色数据分布的话,迁移学习不会有太大的坏处,但是也别指望这会对于模型有很大的帮助。因为少量的源数据无法给与神经网络的各个隐含层足够的信息。

when transfer learning make sense?

1.task A and B have the same input x

比如上面的例子中图片识别和放射检测都是图像输入

2.You have a lot more data for Task A than Task B

其原因在于,对于目标B来说每个样本b的价值很高,但是每个样本a的价值很低,如果要通过源域A给予目标域B足够的信息,就需要很多很多的样本a才能达到足够的价值。

3.Low level features from A could be helpful for learning B

所谓低层次特征比如说,上面例子中的普通图像识别也许给予神经网络各层颜色、边缘、光线等等低层次特征的学习参数,这有可能对放射图片识别带来帮助。

ubuntu之路——day11.5 迁移学习的更多相关文章

  1. ubuntu之路——day11.6 多任务学习

    在迁移学习transfer learning中,你的步骤是串行的sequential process 在多任务学习multi-task learning中,你试图让单个神经网络同时做几件事情,然后这里 ...

  2. ubuntu之路——day11.7 end-to-end deep learning

    在传统的数据处理系统或学习系统中,有一些工作需要多个步骤进行,但是端到端的学习就是用一个神经网络来代替中间所有的过程. 举个例子,在语音识别中: X(Audio)----------MFCC----- ...

  3. ubuntu之路——day11.2 快速搭建系统并进行迭代、在不同的划分上进行训练和测试

    快速搭建系统并进行迭代 1.建立dev/test set,并确定你的目标 2.快速建立初始化的系统 3.使用前面提到的bias/variance分析和错误分析来进行模型优化和迭代 针对以上的过程,An ...

  4. ubuntu之路——day8.1 深度学习优化算法之mini-batch梯度下降法

    所谓Mini-batch梯度下降法就是划分训练集和测试集为等分的数个子集,比如原来有500W个样本,将其划分为5000个baby batch,每个子集中有1000个样本,然后每次对一个mini-bat ...

  5. ubuntu之路——day11.4 定位数据不匹配与人工合成数据

    1.人工检验train和dev/test之间的区别: 比如:汽车语音识别中的噪音.地名难以识别等等 2.使得你的训练集更靠近(相似于)dev/test,收集更多类似于dev的数据: 比如:dev中存在 ...

  6. ubuntu之路——day11.3 不匹配数据划分的偏差和方差

    在11.2中,我们提到了一种数据划分的方法,那么怎么衡量这种数据划分方法中的误差呢? 来看一个例子:有20w条各种领域的语音识别数据,2w条汽车语音定位数据 train+dev+test,其中trai ...

  7. ubuntu之路——day11.1 如何进行误差分析

    举个例子 还是分类猫图片的例子 假设在dev上测试的时候,有100张图片被误分类了.现在要做的就是手动检查所有被误分类的图片,然后看一下这些图片都是因为什么原因被误分类了. 比如有些可能因为被误分类为 ...

  8. ubuntu之路——day9.1 深度学习超参数的调优

    参数重要性: 第一阶:α即learning rate 第二阶:momentum中的β,hidden units的数量,mini-batch的大小 第三阶:hidden layers的数量,learni ...

  9. ubuntu之路——day8.2 深度学习优化算法之指数加权平均与偏差修正,以及基于指数加权移动平均法的动量梯度下降法

    首先感谢吴恩达老师的免费公开课,以下图片均来自于Andrew Ng的公开课 指数加权平均法 在统计学中被称为指数加权移动平均法,来看下面一个例子: 这是伦敦在一些天数中的气温分布图 Vt = βVt- ...

随机推荐

  1. Django form表单 组件

    目录 Django form表单 组件 Form 组件介绍 普通方式手写注册功能 使用form组件实现注册功能 Form 常用字段与插件 常用字段(必备) 字段参数(必备) 内置验证(必备) 自定义效 ...

  2. linux运行级

    Linux有0到6个级别,分别对应/etc/rcN.d,N对应7个级别 各运行级详解 0.关机 1.单用户模式,类似于Windows安全模式 2.多用户模式 3.完整的多用户模式.标准运行级 4.不用 ...

  3. 学习python的日常2

    ---恢复内容开始--- 数组list 添加用.append(i,'xxx')方法 删除用.pop(i)方法,其中i为索引位置 数组可以直接作为元素插入数组 元组tuple(初始化后不能改变,所谓不变 ...

  4. ARM的Semihosting技术(转)

    Semihosting技术将应用程序中的IO请求通过一定的通道传送到主机(host),由主机上的资源响应应用程序的IO请求, 而不是像在主机上执行本地应用程序一样,由应用程序所在的计算机响应应用程序I ...

  5. 虚拟机搭建IKUAI软路由

    1.登录爱快软路由的官网下载镜像(支持ISO ,GHO),这里采用iso安装 2.选择好后开机(选择数字编号1,回车) 3.输入“y”回车,程序自动安装 4.安装成功后如图 5.设置IP 6.绑定网卡 ...

  6. Flink 使用(一)——从kafka中读取数据写入到HBASE中

    1.前言 本文是在<如何计算实时热门商品>[1]一文上做的扩展,仅在功能上验证了利用Flink消费Kafka数据,把处理后的数据写入到HBase的流程,其具体性能未做调优.此外,文中并未就 ...

  7. 【转】高性能网络编程1----accept建立连接

    最近在部门内做了个高性能网络编程的培训,近日整理了下PPT,欲写成一系列文章从应用角度谈谈它. 编写服务器时,许多程序员习惯于使用高层次的组件.中间件(例如OO(面向对象)层层封装过的开源组件),相比 ...

  8. Linux系统运维相关的面试题 (问答题)

    这里给大家整理了一些Linux系统运维相关的面试题,有些问题没有标准答案,希望要去参加Linux运维面试的朋友,可以先思考下这些问题.   一.Linux操作系统知识 1.常见的Linux发行版本都有 ...

  9. java基础(13)---集合框架

    一.集合框架 Java的集合类是一些非常实用的工具类,主要用于存储和装载数据 (包括对象),因此,Java的集合类也被成为容器.在Java中,所有的集合类都位于java.util包下,这些集合类主要是 ...

  10. P1345 [USACO5.4]奶牛的电信[拆点+最小割]

    题目描述 农夫约翰的奶牛们喜欢通过电邮保持联系,于是她们建立了一个奶牛电脑网络,以便互相交流.这些机器用如下的方式发送电邮:如果存在一个由c台电脑组成的序列a1,a2,...,a(c),且a1与a2相 ...