一.代码实现  

 package zhen;

 import java.util.Arrays;

 public class Arrangement {

       /**
* 计算阶乘数,即n! = n * (n-1) * ... * 2 * 1
*/
private static long factorial(int n) {
long sum = 1;
while( n > 0 ) {
sum = sum * n--;
}
return sum;
} /**
* 排列计算公式A = n!/(n - m)!
*/
public static long arrangement(int m, int n) {
return m <= n ? factorial(n) / factorial(n - m) : 0;
} /**
* 排列选择(从列表中选择n个排列)
* @param dataList 待选列表
* @param n 选择个数
*/
public static void arrangementSelect(String[] dataList, int n) {
System.out.println(String.format("A(%d, %d) = %d", dataList.length, n, arrangement(n, dataList.length)));
arrangementSelect(dataList, new String[n], 0);
} /**
* 排列选择
* @param dataList 待选列表
* @param resultList 前面(resultIndex-1)个的排列结果
* @param resultIndex 选择索引,从0开始
*/
private static void arrangementSelect(String[] dataList, String[] resultList, int resultIndex) {
int resultLen = resultList.length;
if(resultIndex >= resultLen) { // 全部选择完时,输出排列结果
System.out.println(Arrays.asList(resultList));
return;
} // 递归选择下一个
for(int i = 0; i < dataList.length; i++) {
// 判断待选项是否存在于排列结果中
boolean exists = false;
for (int j = 0; j < resultIndex; j++) {
if (dataList[i].equals(resultList[j])) {
exists = true;
break;
}
}
if (!exists) { // 排列结果不存在该项,才可选择
resultList[resultIndex] = dataList[i];
arrangementSelect(dataList, resultList, resultIndex + 1);
}
}
} /**
* 组合计算公式C<sup>m</sup><sub>n</sub> = n! / (m! * (n - m)!)
* @param m
* @param n
* @return
*/
public static long combination(int m, int n) {
return m <= n ? factorial(n) / (factorial(m) * factorial((n - m))) : 0;
} /**
* 组合选择(从列表中选择n个组合)
* @param dataList 待选列表
* @param n 选择个数
*/
public static void combinationSelect(String[] dataList, int n) {
System.out.println(String.format("C(%d, %d) = %d", dataList.length, n, combination(n, dataList.length)));
combinationSelect(dataList, 0, new String[n], 0);
} /**
* 组合选择
* @param dataList 待选列表
* @param dataIndex 待选开始索引
* @param resultList 前面(resultIndex-1)个的组合结果
* @param resultIndex 选择索引,从0开始
*/
private static void combinationSelect(String[] dataList, int dataIndex, String[] resultList, int resultIndex) {
int resultLen = resultList.length;
int resultCount = resultIndex + 1;
if (resultCount > resultLen) { // 全部选择完时,输出组合结果
System.out.println(Arrays.asList(resultList));
return;
} // 递归选择下一个
for (int i = dataIndex; i < dataList.length + resultCount - resultLen; i++) {
resultList[resultIndex] = dataList[i];
combinationSelect(dataList, i + 1, resultList, resultIndex + 1);
}
} public static void main(String[] args) {
String[] array = new String[4]; array[0] = "SG614111010000000010001";
array[1] = "SG614111020000000020001";
array[2] = "SG614111030000000030001";
array[3] = "SG614111040000000040001";
/**
* 测试排列
*/
System.out.println("测试排列:");
arrangementSelect(array, array.length); /**
* 测试组合
*/
System.out.println("测试组合:");
for(int i = 1; i <= array.length; i++){
combinationSelect(array, i);
}
}
}

二.结果

 测试排列:
A(4, 4) = 24
[SG614111010000000010001, SG614111020000000020001, SG614111030000000030001, SG614111040000000040001]
[SG614111010000000010001, SG614111020000000020001, SG614111040000000040001, SG614111030000000030001]
[SG614111010000000010001, SG614111030000000030001, SG614111020000000020001, SG614111040000000040001]
[SG614111010000000010001, SG614111030000000030001, SG614111040000000040001, SG614111020000000020001]
[SG614111010000000010001, SG614111040000000040001, SG614111020000000020001, SG614111030000000030001]
[SG614111010000000010001, SG614111040000000040001, SG614111030000000030001, SG614111020000000020001]
[SG614111020000000020001, SG614111010000000010001, SG614111030000000030001, SG614111040000000040001]
[SG614111020000000020001, SG614111010000000010001, SG614111040000000040001, SG614111030000000030001]
[SG614111020000000020001, SG614111030000000030001, SG614111010000000010001, SG614111040000000040001]
[SG614111020000000020001, SG614111030000000030001, SG614111040000000040001, SG614111010000000010001]
[SG614111020000000020001, SG614111040000000040001, SG614111010000000010001, SG614111030000000030001]
[SG614111020000000020001, SG614111040000000040001, SG614111030000000030001, SG614111010000000010001]
[SG614111030000000030001, SG614111010000000010001, SG614111020000000020001, SG614111040000000040001]
[SG614111030000000030001, SG614111010000000010001, SG614111040000000040001, SG614111020000000020001]
[SG614111030000000030001, SG614111020000000020001, SG614111010000000010001, SG614111040000000040001]
[SG614111030000000030001, SG614111020000000020001, SG614111040000000040001, SG614111010000000010001]
[SG614111030000000030001, SG614111040000000040001, SG614111010000000010001, SG614111020000000020001]
[SG614111030000000030001, SG614111040000000040001, SG614111020000000020001, SG614111010000000010001]
[SG614111040000000040001, SG614111010000000010001, SG614111020000000020001, SG614111030000000030001]
[SG614111040000000040001, SG614111010000000010001, SG614111030000000030001, SG614111020000000020001]
[SG614111040000000040001, SG614111020000000020001, SG614111010000000010001, SG614111030000000030001]
[SG614111040000000040001, SG614111020000000020001, SG614111030000000030001, SG614111010000000010001]
[SG614111040000000040001, SG614111030000000030001, SG614111010000000010001, SG614111020000000020001]
[SG614111040000000040001, SG614111030000000030001, SG614111020000000020001, SG614111010000000010001]
测试组合:
C(4, 1) = 4
[SG614111010000000010001]
[SG614111020000000020001]
[SG614111030000000030001]
[SG614111040000000040001]
C(4, 2) = 6
[SG614111010000000010001, SG614111020000000020001]
[SG614111010000000010001, SG614111030000000030001]
[SG614111010000000010001, SG614111040000000040001]
[SG614111020000000020001, SG614111030000000030001]
[SG614111020000000020001, SG614111040000000040001]
[SG614111030000000030001, SG614111040000000040001]
C(4, 3) = 4
[SG614111010000000010001, SG614111020000000020001, SG614111030000000030001]
[SG614111010000000010001, SG614111020000000020001, SG614111040000000040001]
[SG614111010000000010001, SG614111030000000030001, SG614111040000000040001]
[SG614111020000000020001, SG614111030000000030001, SG614111040000000040001]
C(4, 4) = 1
[SG614111010000000010001, SG614111020000000020001, SG614111030000000030001, SG614111040000000040001]

代码实现排列组合【Java】的更多相关文章

  1. 用js实现排列组合

    在leetcode上看到一个题,代码实现排列组合的. 记得大学上课时候,就用c写过,现在用js试试,顺便看看耗时. 先看看3的阶乘: function permute(temArr,testArr){ ...

  2. java实现排列组合(通俗易懂)

    个人感觉这篇文章(原文地址见文章尾)写的排列组合问题,非常的好,而且是一步一步引出排列组合问题,我也是看了这篇文章,一步一步按照这个思路来,最后会了自己的一套排列组合 也因此在算法竞赛中,两次用到了, ...

  3. Java蓝桥杯——排列组合

    排列组合介绍 排列,就是指从给定n个数的元素中取出指定m个数的元素,进行排序. 组合,则是指从给定n个数的元素中仅仅取出指定m个数的元素,不考虑排序. 全排列(permutation) 以数字为例,全 ...

  4. HDU 4045 Machine scheduling (组合数学-斯特林数,组合数学-排列组合)

    Machine scheduling Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  5. 数组排列组合问题——BACKTRACKING

    BACKTRACKING backtracking(回溯法)是一类递归算法,通常用于解决某类问题:要求找出答案空间中符合某种特定要求的答案,比如eight queens puzzle(将国际象棋的八个 ...

  6. 给定数组a[1,2,3],用a里面的元素来生成一个长度为5的数组,打印出其排列组合

    给定数组a[1,2,3],用a里面的元素来生成一个长度为5的数组,打印出其排列组合 ruby代码: def all_possible_arr arr, length = 5 ret = [] leng ...

  7. LeetCode 77 Combinations(排列组合)

    题目链接:https://leetcode.com/problems/combinations/#/description    Problem:给两个正数分别为n和k,求出从1,2.......n这 ...

  8. hdu 4451 Dressing 排列组合/水题

    Dressing Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Subm ...

  9. LeetCode OJ:Combinations (排列组合)

    Given two integers n and k, return all possible combinations of k numbers out of 1 ... n. For exampl ...

随机推荐

  1. git解决error: The following untracked working tree files would be overwritten by checkout

    在IDEA中进行分支切换时,出现如此错误,导致无法正常切换:error: The following untracked working tree files would be overwritten ...

  2. Mybatis出错: Cause: org.apache.ibatis.reflection.ReflectionException: Error instantiating class com.cyf.pojo.User with invalid types () or values ()

    org.apache.ibatis.exceptions.PersistenceException: ### Error querying database. Cause: org.apache.ib ...

  3. Katalon studio登陆并进行用户名和密码参数化

    前面步骤不截图了,简单说一下: 1.创建空的test case :login 2.点击record录制脚本,走登陆 3.生成的脚本后,点击login用例属性,新建2个变量值 4.创建好后,进入用例页面 ...

  4. Kubernetes k8s 基于Docker For Windows

      开启和安装Kubernetes k8s 基于Docker For Windows   0.最近发现,Docker For Windows Stable在Enable Kubernetes这个问题上 ...

  5. 浅谈MVC、MVVM的区别

    一.概述 MVC,MVP,MVVM是三种常见的前端架构模式(Architectural Pattern),它通过分离关注点来改进代码组织方式.不同于设计模式(Design Pattern),只是为了解 ...

  6. Scratch学习中需要注意的地方,学习Scratch时需要注意的地方

    在所有的编程工具中,Scratch是比较简单的,适合孩子学习锻炼,也是信息学奥赛的常见项目.通常Scratch学习流程是,先掌握程序相关模块,并且了解各个模块的功能使用,然后通过项目的编写和练习,不断 ...

  7. Delphi编码与签名【URL编码与解码,Base64编码与解码,MD5加密,HMAC-SHA1、HMAC-SHA224、HMAC-SHA256、HMAC-SHA384和HMAC-SHA512签名】

    作者QQ:(648437169) 点击下载➨delphi编码与签名 [Delphi编码与签名]URL编码与解码,Base64编码与解码,MD5加密,HMAC-SHA1.HMAC-SHA224.HMAC ...

  8. select中的option被选中时页面的跳转

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. ComPtr的介绍以及使用

    ComPtr是为COM而设计的智能指针.它支持WindowsRT,也支持传统Win32.相比ATL里的CComPtr类,它有了一些提升. ComPtr包含在Windows 8.x SDK and Wi ...

  10. 1、Linux安装前的准备

    1.硬盘和分区 1.1  Linux中如何表示硬盘和分区 硬盘划分为 主分区.扩展分区和逻辑分区三部分. 主分区只有四个: 扩展分区可以看成是一个特殊的主分区类型,在扩展分区中还可以建立相应的逻辑分区 ...