题意:要完成一个由s个子项目组成的项目,给b(b>=s)个部门分配,从而把b个部门分成s个组。分组完成后,每一组的任
意两个点之间都要传递信息。假设在(i,j)两个点间传送信息,要先把信息加密,然后快递员从i出发到总部,再加
密,在到j点。出于安全原因,每次只能携带一条消息。现在给出了道路网络、各个部门和总部的位置,请输出快
递员要走的最小总距离。
思路:求最短路dis,排序。 由排序不等式,dis相近的分到一组。 那么就是一个分组问题,可以用四边形不等式; 决策单调性DP; 二分+单调栈; 斜率优化。
#include<bits/stdc++.h>
#define s second
#define f first
#define ll long long
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int inf=1e9;
const int maxn=;
int Laxt[maxn],Next[maxn],To[maxn],Len[maxn],cnt;
int a[maxn],b[maxn],c[maxn],dis[maxn],N,M,S,B,s[][];
ll dp[][],sum[];
pair<int,int>p[maxn]; int vis[maxn];
void read(int &x){
x=; char c=getchar();
while(c>''||c<'') c=getchar();
while(c>=''&&c<='') x=x*+c-'',c=getchar();
}
void add(int u,int v,int l)
{
Next[++cnt]=Laxt[u]; Laxt[u]=cnt;
To[cnt]=v; Len[cnt]=l;
}
struct in{
int dis,u;
in(){}
in(int dd,int uu):dis(dd),u(uu){}
friend bool operator <(in w,in v){
return w.dis>v.dis;
}
};
void SPFA()
{
rep(i,,M) swap(a[i],b[i]);
cnt=; rep(i,,N) Laxt[i]=,vis[i]=,dis[i]=inf;
rep(i,,M) add(a[i],b[i],c[i]);
priority_queue<in>q; q.push(in(,B+)); dis[B+]=;
while(!q.empty()){
int u=q.top().u; q.pop(); vis[u]=;
for(int i=Laxt[u];i;i=Next[i]){
int v=To[i];if(dis[v]>dis[u]+Len[i]){
dis[v]=dis[u]+Len[i];
if(!vis[v]) vis[v]=,q.push(in(dis[v],v));
}
}
}
}
int main()
{
while(~scanf("%d%d%d%d",&N,&B,&S,&M)){
rep(i,,M) read(a[i]),read(b[i]),read(c[i]);
SPFA();
rep(i,,B) p[i].s=i,p[i].f=dis[i];
SPFA();
rep(i,,B) p[i].f+=dis[i];
sort(p+,p+B+);
rep(i,,B) sum[i]=sum[i-]+p[i].f;
memset(s,,sizeof(s));
memset(dp,0x3f,sizeof(dp));
dp[][]=;
rep(k,,S) s[B+][k]=B;
rep(k,,S){
for(int i=B;i>=;i--) {
for(int j=s[i][k-];j<=s[i+][k]&&j<i;j++){
if(dp[i][k]>dp[j][k-]+1LL*(i-j-)*(sum[i]-sum[j])){
dp[i][k]=dp[j][k-]+1LL*(i-j-)*(sum[i]-sum[j]);
s[i][k]=j;
}
}
}
}
printf("%lld\n",dp[B][S]);
}
return ;
}
 

Gym-101242B:Branch Assignment(最短路,四边形不等式优化DP)的更多相关文章

  1. hdu 2829 Lawrence(四边形不等式优化dp)

    T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in ...

  2. BZOJ1563/洛谷P1912 诗人小G 【四边形不等式优化dp】

    题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\for ...

  3. 【转】斜率优化DP和四边形不等式优化DP整理

    (自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...

  4. codevs3002石子归并3(四边形不等式优化dp)

    3002 石子归并 3 参考 http://it.dgzx.net/drkt/oszt/zltk/yxlw/dongtai3.htm  时间限制: 1 s  空间限制: 256000 KB  题目等级 ...

  5. CF321E Ciel and Gondolas Wqs二分 四边形不等式优化dp 决策单调性

    LINK:CF321E Ciel and Gondolas 很少遇到这么有意思的题目了.虽然很套路.. 容易想到dp \(f_{i,j}\)表示前i段分了j段的最小值 转移需要维护一个\(cost(i ...

  6. HDU 2829 Lawrence (斜率优化DP或四边形不等式优化DP)

    题意:给定 n 个数,要你将其分成m + 1组,要求每组数必须是连续的而且要求得到的价值最小.一组数的价值定义为该组内任意两个数乘积之和,如果某组中仅有一个数,那么该组数的价值为0. 析:DP状态方程 ...

  7. 四边形不等式优化DP——石子合并问题 学习笔记

    好方啊马上就要区域赛了连DP都不会QAQ 毛子青<动态规划算法的优化技巧>论文里面提到了一类问题:石子合并. n堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的 ...

  8. POJ 1160 四边形不等式优化DP Post Office

    d(i, j)表示用i个邮局覆盖前j个村庄所需的最小花费 则有状态转移方程:d(i, j) = min{ d(i-1, k) + w(k+1, j) } 其中w(i, j)的值是可以预处理出来的. 下 ...

  9. 新年趣事之红包--"四边形"不等式优化DP

    目录 题目描述 输入 输出 思路 新年趣事之红包 时间限制: 1 Sec  内存限制: 64 MB 题目描述 xiaomengxian一进门,发现外公.外婆.叔叔.阿姨--都坐在客厅里等着他呢.经过仔 ...

随机推荐

  1. Java8 日期与时间 API

    在 Java 中,想处理日期和时间时,通常都会选用 java.util.Date 这个类进行处理.不过不知道是设计者在当时没想好还是其它原因,在 Java 1.0 中引入的这个类,大部分的 API 在 ...

  2. Python【每日一问】24

    问: [基础题1]: 请解释一下 if __name__ == '__main__' :的作用 [基础题2]:请输入星期几的第一个字母来判断一下是星期几,如果第一个字母一样,则继续判断第二个字母. P ...

  3. BitSet源码

    public class BitSet1 implements Cloneable, java.io.Serializable { // >>>左边补0, << 右边补0 ...

  4. C# 读取配置指定Config文件--亲测通过

    直接上代码: public class ConfigUtils { public static String GetKey(String configPath,String key) { Config ...

  5. <面试题分享> 记两次58面试

    说明 来北京找工作,有个猎头看我的简历不错,帮我投了两个58同城的面试,投的都比较高,题也注重原理,较难,这里分享出来,给有需要的人和自己提个醒,保持空杯 面试题内容 2019.05.07 北京58企 ...

  6. CentOS 7 新系统 手动配置网络 简要步骤

    一.配置网卡文件 1.修改网卡文件进入网卡配置文件目录 cd /etc/sysconfig/network-scripts 2.查看网卡文件 # ls CentOS中网卡文件一般为 ifcfg-ens ...

  7. C# 连接数据库的配置方法

    写在前面 在项目的开发过程中我门常常遇到会忘记数据库连接的配置的写法的尴尬处境.俗话说,好记性不如烂笔头.所以,mark一下. 1.Sqlserver数据库连接 <connectionStrin ...

  8. MybatisGenerator生成SSM的dao层

    官网下载 mybatis generator 下载generator的release版本mybatis-generator-core-1.4.0-bundle.zip https://github.c ...

  9. box-shadow 模糊半径与扩展半径

    关于box-shadow的基本用法参阅CSS3 box-shadow一章节. 此属性用来设置元素的阴影效果,语法结构如下: box-shadow:h-shadow v-shadow blur spre ...

  10. cmd查找并杀死被占用的端口的进程

    java开发启动server的时候经常会遇到端口被占用的错误提示, 如果不想更换服务配置的端口号,那么怎么解决端口被占用的情况呢? 1. cmd窗口输入netstat -ano ,在列表中查看被占用的 ...