接下来求解前缀幂次和

求解 \(\sum_{i = 1}^{k} i^k\)
\[
\begin{aligned}
(p+1)^k - 1 = (p+1)^k - p^k + p^k - (p-1)^k + \dots + p^1 - 1 \\
(p+1)^k - p^k = \sum_{i=0}^{k-1} \binom{k}{i} p^i \\
(p+1)^k - 1 = \sum_{j=1}^{p} \sum_{i=0}^{k-1} \binom{k}{i} j^i = \sum_{i=0}^{k-1} \binom{k}{i} \sum_{j=1}^{p} j^i
\end{aligned}
\]

设 \(Psum(p, k) = \sum_{i = 1} ^ {p} i ^ k\) 即 \(k\) 次幂的前缀和
\[
\begin{aligned}
(p+1)^{k+1} - 1 = sum_{i=0}^{k} \binom{k+1}{i} Psum(p, i) \\
Psum(p, k) = \frac{ (p+1)^{k+1} - 1 - \sum_{i=0}^{k-1} \binom{k+1}{i} Psum(p, i) }{ \binom{k+1}{k} } \\
\end{aligned}
\]
这样就是跟 \(p\) 无关了, \(O(k ^ 2)\) 暴力推

随机推荐

  1. Hystrix 超时配置的N种玩法

    前阵子在我的知识星球中,有位朋友对我提了个问题,问我如何让Hystrix支持对接口级别的超时配置,今天给大家写篇文章,普及下Hystrix配置超时的几种方式. 至于以后你是用阿里的Sentinel还是 ...

  2. 小玩意儿之Gitlab 代码提交日志同步到禅道项目管理系统

    以前都是使用禅道官方推荐的服务器本地扫描的方式,但其实不太方便,需要跟着项目的变化,不断的在配置文件维护项目相应仓库的配置. 然后现在Web Hooks越来越普遍的情况下,想尝试一种新的方式.看了禅道 ...

  3. k8s二进制部署

    k8s二进制部署 1.环境准备 主机名 ip地址 角色 k8s-master01 10.0.0.10 master k8s-master02 10.0.0.11 master k8s-node01 1 ...

  4. (十八)golang--defer关键字

    在函数中,程序员经常需要创建资源(比如,数据库连接,文件句柄,锁等),为了在函数执行完毕后,及时释放资源,go设计者提供defer(延时机制) 用defer申明的语句不会立即执行,而是被存入到defe ...

  5. Redis 设计与实现,看 SDS(Simple Dynamic String) 感悟

    Redis 设计与实现,看 SDS(Simple Dynamic String) 感悟 今天在看 Redis 设计与实现这本书的时候,发现了里面系统定义的数据结构 SDS,中文名为 简单动态字符串.对 ...

  6. yum 找不到程序,yum更换国内阿里源

    使用百度云服务器,发现百度yum源非常不稳定,果断采用阿里源,操作步骤如下: 一.备份 $ cd /etc/yum.repos.d/ $ mv baidu-bcm.repo baidu-bcm.rep ...

  7. 用Python完成毫秒级抢单,助你秒杀淘宝大单

    目录: 引言 环境 需求分析&前期准备 淘宝购物流程回顾 秒杀的实现 代码梳理 总结 0 引言 年中购物618大狂欢开始了,各大电商又开始了大力度的折扣促销,我们的小胖又给大家谋了一波福利,淘 ...

  8. 拒绝CPU挖矿矿工有责

    长期以来CPU挖矿给挖矿行业带来持久的负面影响,因为CPU是电脑的核心设备,一挖矿就干不了别的了,大家是否可以达成共识拒绝CPU挖矿? 显卡挖矿刚好构建在不影响大众的日常工作生活对电脑的需求之上,家用 ...

  9. Winform中对xml文件进行保存时空白节点自动换行问题的解决

    场景 Winform中自定义xml配置文件后对节点进行读取与写入: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/10053213 ...

  10. Entity Framework 导航属性(2)

    1.学校 [Table("School")] public partial class School { public School() { Students = new List ...