题目描述

对于给定的开区间集合 I 和正整数 k,计算开区间集合 I 的最长 k可重区间集的长度。

输入输出格式

输入格式:

的第 1 行有 2 个正整数 n和 k,分别表示开区间的个数和开区间的可重迭数。接下来的 n行,每行有 2 个整数,表示开区间的左右端点坐标。

输出格式:

将计算出的最长 k可重区间集的长度输出

输入输出样例

输入样例#1: 复制

4 2
1 7
6 8
7 10
9 13
输出样例#1: 复制

15

说明

对于100%的数据,1\le n\le 5001≤n≤500 ,1\le k\le 31≤k≤3

 
 
确实比较难想
正解有两种
借鉴一下学长的图
 
首先离散化
第一种

这样首先保证每个点都不会覆盖超过$k$次

那么对于一个区间后面的区间,它对这个区间内的点是没有影响的,故建一条如图所示的边

第二种

当选择了一个区间$(l,r)$后,相当于$(l,r)$这个区间内的点少了一次可以被选择的机会

所以从$l$向$r$连边

代码为第2种

#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#include<vector>
#define AddEdge(x,y,z,f) add_edge(x,y,z,f),add_edge(y,x,-z,0)
using namespace std;
const int MAXN=1e5+;
const int INF=1e6+;
inline int read()
{
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int N,K,S,T;
int anscost=;
struct node
{
int u,v,w,f,nxt;
}edge[MAXN];
int head[MAXN],num=;
inline void add_edge(int x,int y,int z,int f)
{
edge[num].u=x;
edge[num].v=y;
edge[num].w=z;
edge[num].f=f;
edge[num].nxt=head[x];
head[x]=num++;
}
int Pre[MAXN],vis[MAXN],dis[MAXN];
bool SPFA()
{
queue<int>q;
memset(dis,0xf,sizeof(dis));
memset(vis,,sizeof(vis));
dis[S]=;
q.push(S);
while(q.size()!=)
{
int p=q.front();q.pop();
vis[p]=;
for(int i=head[p];i!=-;i=edge[i].nxt)
{
if(dis[edge[i].v]>dis[p]+edge[i].w&&edge[i].f)
{
dis[edge[i].v]=dis[p]+edge[i].w;
Pre[edge[i].v]=i;
if(!vis[edge[i].v])
vis[edge[i].v]=,q.push(edge[i].v);
}
}
}
return dis[T]<=INF;
}
void f()
{
int nowflow=INF;
for(int now=T;now!=S;now=edge[Pre[now]].u)
nowflow=min(nowflow,edge[Pre[now]].f);
for(int now=T;now!=S;now=edge[Pre[now]].u)
edge[Pre[now]].f-=nowflow,
edge[Pre[now]^].f+=nowflow;
anscost+=nowflow*dis[T];
}
void MCMF()
{
int ans=;
while(SPFA())
f();
printf("%d\n",-anscost);
}
int L[MAXN],R[MAXN],date[MAXN],tot=;
int main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
#else
#endif
memset(head,-,sizeof(head));
N=read(),K=read();
S=,T=*N+;
for(int i=;i<=N;i++)
{
L[i]=read();R[i]=read();
date[++tot]=L[i],
date[++tot]=R[i];
}
sort(date+,date+N*+);
int num=unique(date+,date+*N+)-date-;
for(int i=;i<=N;i++)
L[i]=lower_bound(date+,date+num-,L[i])-date,
R[i]=lower_bound(date+,date+num+,R[i])-date;
for(int i=;i<=num-;i++)
AddEdge(i,i+,,INF);
for(int i=;i<=N;i++)
AddEdge(L[i],R[i],-(date[R[i]]-date[L[i]]),);
AddEdge(S,,,K);
AddEdge(num,T,,INF);
MCMF();
return ;
}

洛谷P3358 最长k可重区间集问题(费用流)的更多相关文章

  1. 洛谷P3357 最长k可重线段集问题(费用流)

    题目描述 给定平面 x-O-yx−O−y 上 nn 个开线段组成的集合 II ,和一个正整数 kk .试设计一个算法,从开线段集合 II 中选取出开线段集合 S\subseteq IS⊆I ,使得在  ...

  2. 洛谷P3358 最长k可重区间集问题(费用流)

    传送门 因为一个zz错误调了一个早上……汇点写错了……spfa也写错了……好吧好像是两个…… 把数轴上的每一个点向它右边的点连一条边,容量为$k$,费用为$0$,然后把每一个区间的左端点向右端点连边, ...

  3. 洛谷 P3358 最长k可重区间集问题 【最大费用最大流】

    同 poj 3680 https:www.cnblogs.com/lokiii/p/8413139.html #include<iostream> #include<cstdio&g ...

  4. 【网络流24题】最长k可重区间集(费用流)

    [网络流24题]最长k可重区间集(费用流) 题面 Cogs Loj 洛谷 题解 首先注意一下 这道题目里面 在Cogs上直接做就行了 洛谷和Loj上需要判断数据合法,如果\(l>r\)就要交换\ ...

  5. [网络流24题] 最长k可重区间集问题 (费用流)

    洛谷传送门 LOJ传送门 很巧妙的建图啊...刚了$1h$也没想出来,最后看的题解 发现这道题并不类似于我们平时做的网络流题,它是在序列上的,且很难建出来二分图的形. 那就让它在序列上待着吧= = 对 ...

  6. 网络流 P3358 最长k可重区间集问题

    P3358 最长k可重区间集问题 题目描述 对于给定的开区间集合 I 和正整数 k,计算开区间集合 I 的最长 k可重区间集的长度. 输入输出格式 输入格式: 的第 1 行有 2 个正整数 n和 k, ...

  7. 【网络流24题】最长k可重线段集(费用流)

    [网络流24题]最长k可重线段集(费用流) 题面 Cogs的数据有问题 Loj 洛谷 题解 这道题和最长k可重区间集没有区别 只不过费用额外计算一下 但是,还是有一点要注意的地方 这里可以是一条垂直的 ...

  8. 洛谷P3357 最长k可重线段集问题(费用流)

    传送门 其实和最长k可重区间集问题差不多诶…… 把这条开线段给压成x轴上的一条线段,然后按上面说的那种方法做即可 然而有一个坑点是线段可以垂直于x轴,然后一压变成一个点,连上正权环,求最长路……然后s ...

  9. 洛谷 P3357 最长k可重线段集问题【最大流】

    pre:http://www.cnblogs.com/lokiii/p/8435499.html 和最长k可重区间集问题差不多,也就是价值的计算方法不一样,但是注意这里可能会有x0==x1的情况也就是 ...

随机推荐

  1. Angular 通过constant(name,value),value(name,value)创建服务

    区别: constant()可以将已经存在的变量值注册为服务,并将其注入到应用的其他部分中,他的value可以是值,也可以是对象.通过他来配置数据,也就是说可以在config里注入,但是他是不可以修改 ...

  2. day06-08初识面向对象

    一.面向过程 VS 面向对象 面向过程的程序设计的核心是过程(流水线式思维),过程即解决问题的步骤,面向过程的设计就好比精心设计好一条流水线,考虑周全什么时候处理什么东西.优点是:极大的降低了写程序的 ...

  3. css常用代码大全以及css兼容(转载)

    css常见的快捷开发代码汇总(长期更新),包括CSS3代码,有一些css效果很顽固,经常会一时找不出解决方案,网络上也有很多的工具和高手提供了具体的浏览器兼容代码,这个页面我今后会经常整理,希望能够帮 ...

  4. 小白学习Spark系列四:RDD踩坑总结(scala+spark2.1 sql常用方法)

    初次尝试用 Spark+scala 完成项目的重构,由于两者之前都没接触过,所以边学边用的过程大多艰难.首先面临的是如何快速上手,然后是代码调优.性能调优.本章主要记录自己在项目中遇到的问题以及解决方 ...

  5. deepin 新创建的用户文件管理中挂载点打不开

    使用 root 用户可以打开,但是使用非 root 用户打不开 原因是权限不够 test1@test1-PC:~$ cd /media/ test1@test1-PC:/media$ ls apt c ...

  6. DedeCMS用channelartlist调用顶级栏目及列表

    这个标签全局都可使用,可以减少多次使用 {dede:arclist typeid=‘栏目ID’titlelen='60' row='10'}.除了宏标记外,{dede:channelartlist}是 ...

  7. 四种ASP网页跳转代码

    时间:2012-06-12 21:12来源:未知 输入:铜都风尘 点击: 32987 次 如果你要在服务器端跳转,可以这样: Response.Redirect(http://blog.163.com ...

  8. CSS - 内联元素span 强制换行失败的可能原因

    在CSS中,标签span 强制换行失败:(使用display:block) 可能原因:float:left   or  float:right

  9. [SDOI2016]生成魔咒(后缀自动机)

    看一眼题.本质不同的字串数. 嘴角微微上扬. 每一次加一个数输出一个答案. 笑容渐渐消失. 等等,\(SAM\)好像也可以求本质不同的字串. 设当前字符串用\(x\)表示,每次插入完成后\(ans\) ...

  10. 洛谷P1046 陶陶摘苹果

    题目描述 陶陶家的院子里有一棵苹果树,每到秋天树上就会结出 101010 个苹果.苹果成熟的时候,陶陶就会跑去摘苹果.陶陶有个 303030 厘米高的板凳,当她不能直接用手摘到苹果的时候,就会踩到板凳 ...