计算几何:按顺序给n个圆覆盖。问最后能够有几个圆被看见。。

对每一个圆求和其它圆的交点,每两个交点之间就是可能被看到的圆弧,取圆弧的中点,往外扩展一点或者往里缩一点,从上往下推断有没有圆能够盖住这个点,能盖住这个点的最上面的圆一定是可见的

Viva Confetti


Time Limit: 2 Seconds      Memory Limit: 65536 KB


Do you know confetti?

They are small discs of colored paper, and people throw them around during parties or festivals. Since people throw lots of confetti, they may end up stacked
one on another, so there may be hidden ones underneath.

A handful of various sized confetti have been dropped on a table. Given their positions and sizes, can you tell us how many of them you can see?

The following figure represents the disc configuration for the first sample input, where the bottom disc is still visible.



Input

The input is composed of a number of configurations of the following form.

n

x1 y1 r1

x2 y2 r2

. . .

xn yn rn

The first line in a configuration is the number of discs in the configuration (a positive integer not more than 100), followed by one line descriptions of each disc: coordinates of its
center and radius, expressed as real numbers in the decimal notation, with up to 12 digits after the decimal point. The imprecision margin is 5*10^-13. That is, it is guaranteed that variations of less than 5*10^-13 on input values do not change which discs
are visible. Coordinates of all points contained in discs are between -10 and 10.

Confetti are listed in their stacking order, x1 y1 r1 being the bottom one and xn yn rn the top one. You are observing from the top.

The end of the input is marked by a zero on a single line.

Output

For each configuration you should output the number of visible confetti on a single line.

Sample Input

3

0 0 0.5

-0.9 0 1.00000000001

0.9 9 1.00000000001

5

0 1 0.5

1 1 1.00000000001

0 2 1.00000000001

-1 1 1.00000000001

0 -0.00001 1.00000000001

5

0 1 0.5

1 1 1.00000000001

0 2 1.00000000001

-1 1 1.00000000001

0 0 1.00000000001

2

0 0 1.0000001

0 0 1

2

0 0 1

0.00000001 0 1

0

Sample Output

3

5

4

2

2


Source: Asia 2002, Kanazawa (Japan)

Submit    

problemId=696" style="color:blue; text-decoration:none">Status

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath> using namespace std; const double eps=5*(1e-13);
const double pi=acos(-1.0); int n; struct Point
{
double x,y;
Point(){}
Point(double _x,double _y):x(_x),y(_y){}
}; struct Circle
{
Point c;
double r;
Circle(){}
Circle(Point _c,double _r):c(_c),r(_r){}
Point point(double x) {return Point(c.x+cos(x)*r,c.y+sin(x)*r);}
}; double normal(double x)
{
return x-floor(x/(2*pi))*2*pi;
} double dcmp(double x)
{
if(fabs(x)<=eps) return 0;
return (x<0)? -1:1;
} double DIST(Point a,Point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
} Circle C[200];
double a[1000];
int tot=0;
bool flag[110]; void check(Point x)
{
for(int i=n-1;i>=0;i--)
{
double d=DIST(x,C[i].c);
if(dcmp(d-C[i].r)<0)
{
flag[i]=true; break;
}
}
} int main()
{
while(scanf("%d",&n)!=EOF&&n)
{
memset(flag,0,sizeof(flag));
for(int i=0;i<n;i++)
{
double x,y,z;
scanf("%lf%lf%lf",&x,&y,&z);
C[i]=Circle(Point(x,y),z);
} for(int i=0;i<n;i++)
{
tot=0;
for(int j=0;j<n;j++)
{
if(i==j) continue;
double dist=DIST(C[i].c,C[j].c);
double ri=C[i].r,rj=C[j].r;
if(dcmp(dist-ri-rj)>=0||dcmp(dist-fabs(ri-rj))<=0) continue;
double t=atan2(C[j].c.y-C[i].c.y,C[j].c.x-C[i].c.x);
double dt= acos((ri*ri+dist*dist-rj*rj)/(2.*ri*dist));
a[tot++]=normal(t+dt); a[tot++]=normal(t-dt);
}
a[tot++]=0;a[tot++]=2*pi;
sort(a,a+tot);
tot=unique(a,a+tot)-a;
for(int j=0;j<tot-1;j++)
{
double u=(a[j]+a[j+1])/2;
double r1=C[i].r+eps,r2=C[i].r-eps;
Point p1=Point(C[i].c.x+r1*cos(u),C[i].c.y+r1*sin(u));
Point p2=Point(C[i].c.x+r2*cos(u),C[i].c.y+r2*sin(u));
check(p1); check(p2);
}
}
int ans=0;
for(int i=0;i<n;i++)
if(flag[i]) ans++;
printf("%d\n",ans);
}
return 0;
}

ZOJ 1696 Viva Confetti 计算几何的更多相关文章

  1. poj1418 Viva Confetti 判断圆是否可见

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Viva Confetti Time Limit: 1000MS   Memory ...

  2. poj 1418 Viva Confetti

    Viva Confetti Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1025   Accepted: 422 Desc ...

  3. uva 2572 Viva Confetti

    思路: 小圆面是由小圆弧围成.那么找出每条小圆弧,如果小圆弧,在小圆弧中点上下左右进行微小位移的所得的点一定在一个小圆面内. 找到最后覆盖这个小点的圆一定是可见的. 圆上的点按照相邻依次排序的关键量为 ...

  4. uva 1308 - Viva Confetti

    这个题目的方法是将圆盘分成一个个圆环,然后判断这些圆环是否被上面的圆覆盖: 如果这个圆的圆周上的圆弧都被上面的覆盖,暂时把它标记为不可见: 然后如果他的头上有个圆,他有个圆弧可见,那么他自己本身可见, ...

  5. UVaLive2572 poj1418 UVa1308 Viva Confetti

    一次放下n个圆 问最终可见的圆的数量 应该是比较经典的问题吧 考虑一个圆与其他每个圆的交点O(n)个 将其割成了O(n)条弧 那么看每条弧的中点 分别向内向外调动eps这个点 则最上面的覆盖这个点的圆 ...

  6. ZOJ 2675 Little Mammoth(计算几何)

    圆形与矩形截面的面积 三角仍然可以做到这一点 代码: #include<stdio.h> #include<string.h> #include<stdlib.h> ...

  7. zoj 3537 区间dp+计算几何

    题意:给定n个点的坐标,先问这些点是否能组成一个凸包,如果是凸包,问用不相交的线来切这个凸包使得凸包只由三角形组成,根据costi, j = |xi + xj| * |yi + yj| % p算切线的 ...

  8. LA2572 Viva Confetti

    题意 PDF 分析 两两圆求交点,对每个圆弧按半径抖动. 时间复杂度\(O(T n^2)\) 代码 #include<iostream> #include<cstdio> #i ...

  9. [GodLove]Wine93 Tarining Round #9

    比赛链接: http://vjudge.net/contest/view.action?cid=48069#overview 题目来源: lrj训练指南---二维几何计算   ID Title Pro ...

随机推荐

  1. POJ - 3257 Cow Roller Coaster (背包)

    题目大意:要用N种材料建一条长为L的路,如今给出每种材料的长度w.起始地点x.发费c和耐久度f 问:在预算为B的情况下,建好这条路的最大耐久度是多少 解题思路:背包问题 dp[i][j]表示起始地点为 ...

  2. Android开发之大位图压缩水印处理

    我们在发微博或者csdn博文的时候都能够给图片加上一个水印.一个独立的标识,那是怎么实现的呢?先封装一个BitmapTools封装类.该类要解决的问题是一将突破存储至sdcard中,二给图片加上水印. ...

  3. docker迁移步骤

    1. 创建快照:docker commit -p 30b8f18f20b4 container-backup (可以通过docker images 查看docker镜像) 2. 镜像保存在本地机器中: ...

  4. jquery中命名冲突问题

    例如用jq代替$符号 var jq = $.noConflict()

  5. 【刷题笔记】LeetCode 606. Construct String from Binary Tree

    题意 给一棵二叉树,把它转化为字符串返回.转化字符串的要求如下: 1.  null 直接转化为  () ;(这个要求其实有点误导人~) 2. 子节点用 () 包裹起来:(这是我自己根据例子添加的要求) ...

  6. linux下关于IPC(进程间通信)

    linux下进程间通信的主要几种方式 管道(Pipe)及有名管道(named pipe):管道可用于具有亲缘关系进程间的通信,有名管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允许 ...

  7. 算法入门经典第六章 例题6-14 Abbott的复仇(Abbott's Revenge)BFS算法实现

    Sample Input 3 1 N 3 3 1 1 WL NR * 1 2 WLF NR ER * 1 3 NL ER * 2 1 SL WR NF * 2 2 SL WF ELF * 2 3 SF ...

  8. 理解Cookie与Session

    HTTP本身是无状态的. 这符合HTTP协议设计的目的.客户端只是简单地向服务器请求某种资源.两者都没有必须记录彼此过去的行为,每一次请求之间都是独立的. 为了保存状态.在客户端使用Cookie,在S ...

  9. 【转】JS回调函数--简单易懂有实例

    JS回调函数--简单易懂有实例 初学js的时候,被回调函数搞得很晕,现在回过头来总结一下什么是回调函数. 我们先来看看回调的英文定义:A callback is a function that is ...

  10. 1到32 数字正则 还有IP的

    正则是按位解析匹配的,所以[1-32]是不行的. 解析: 1.1-32,包含1位数(1-9)和2位数(10-32) 2.10-32必须切割,10-19和20-29形式一样,得到[12][0-9],30 ...