主要知识点:

  • TF/IDF算法介绍
  • 查看es计算_source的过程及各词条的分数
  • 查看一个document是如何被匹配到的

 
 

 
 

一、算法介绍

relevance score算法,简单来说,就是计算出,一个索引中的文本,与搜索文本,他们之间的关联匹配程度。Elasticsearch使用的是 term frequency/inverse document frequency算法,简称为TF/IDF算法

 
 

1、Term frequency

搜索文本中的各个词条在field文本中出现了多少次,出现次数越多,就越相关

示例

搜索请求:hello world

doc1:hello you, and world is very good

doc2:hello, how are you

doc1比doc2更相关

 
 

2、Inverse document frequency

搜索文本中的各个词条在整个索引的所有文档中出现了多少次,出现的次数越多,就越不相关。

 
 

搜索请求:hello world

 
 

doc1:hello, today is very good

doc2:hi world, how are you

 
 

比如说,在index中有1万条document,hello这个单词在所有的document中,一共出现了1000次;world这个单词在所有的document中,一共出现了100次,那么doc2比doc1更相关

 
 

 
 

3、Field-length norm

field越长,相关度越弱

 
 

搜索请求:hello world

 
 

doc1:{ "title": "hello article", "content": "babaaba 1万个单词" }

doc2:{ "title": "my article", "content": "blablabala 1万个单词,hi world" }

 
 

hello world在整个index中出现的次数是一样多的,但是word是在一万个单词中才出现的,所以doc1更相关,title field更短

 
 

二、查看_score是如何被计算出来的

 
 

GET /test_index/test_type/_search?explain

{

"query": {

"match": {

"test_field": "test hello"

}

}

}

 
 

三、查看一个document是如何被匹配到的

 
 

GET /test_index/test_type/6/_explain

{

"query": {

"match": {

"test_field": "test hello"

}

}

}

 
 

四、延伸阅读

百度百科

 
 

55.TF/IDF算法的更多相关文章

  1. tf–idf算法解释及其python代码实现(下)

    tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四 ...

  2. tf–idf算法解释及其python代码实现(上)

    tf–idf算法解释 tf–idf, 是term frequency–inverse document frequency的缩写,它通常用来衡量一个词对在一个语料库中对它所在的文档有多重要,常用在信息 ...

  3. Elasticsearch由浅入深(十)搜索引擎:相关度评分 TF&IDF算法、doc value正排索引、解密query、fetch phrase原理、Bouncing Results问题、基于scoll技术滚动搜索大量数据

    相关度评分 TF&IDF算法 Elasticsearch的相关度评分(relevance score)算法采用的是term frequency/inverse document frequen ...

  4. tf–idf算法解释及其python代码

    tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四 ...

  5. 25.TF&IDF算法以及向量空间模型算法

    主要知识点: boolean model IF/IDF vector space model     一.boolean model     在es做各种搜索进行打分排序时,会先用boolean mo ...

  6. Elasticsearch学习之相关度评分TF&IDF

    relevance score算法,简单来说,就是计算出,一个索引中的文本,与搜索文本,他们之间的关联匹配程度 Elasticsearch使用的是 term frequency/inverse doc ...

  7. 基于TF/IDF的聚类算法原理

        一.TF/IDF描述单个term与特定document的相关性TF(Term Frequency): 表示一个term与某个document的相关性. 公式为这个term在document中出 ...

  8. 信息检索中的TF/IDF概念与算法的解释

    https://blog.csdn.net/class_brick/article/details/79135909 概念 TF-IDF(term frequency–inverse document ...

  9. 文本分类学习(三) 特征权重(TF/IDF)和特征提取

    上一篇中,主要说的就是词袋模型.回顾一下,在进行文本分类之前,我们需要把待分类文本先用词袋模型进行文本表示.首先是将训练集中的所有单词经过去停用词之后组合成一个词袋,或者叫做字典,实际上一个维度很大的 ...

随机推荐

  1. c++ 11 thread 初试

    最新的 c++11标准整合进了 线程支持.以下写一个小程序測试一下. 測试代码: #include <iostream> #include <thread> void hell ...

  2. zoj2676 Network Wars(0-1分数规划,最大流模板)

    Network Wars 07年胡伯涛的论文上的题:http://wenku.baidu.com/view/87ecda38376baf1ffc4fad25.html 代码: #include < ...

  3. [odroid-pc] ubuntu12.04 android4.0移植到odroid-pc过程

    參考:http://blog.csdn.net/sunnybeike/article/details/8098349 odroid  prebuilt版 img下载地址:tag=ODROID-PC&q ...

  4. C++第11周(春)项目3 - 点类派生直线类

    课程首页在:http://blog.csdn.net/sxhelijian/article/details/11890759.内有完整教学方案及资源链接 [项目3 - 点类派生直线类]定义点类Poin ...

  5. Codeforces Round #332 (Div. 2) B. Spongebob and Joke 模拟

    B. Spongebob and Joke     While Patrick was gone shopping, Spongebob decided to play a little trick ...

  6. jQuery - 当当网我的订单页

    <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...

  7. luogu3157 动态逆序对

    题目大意 给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计整个序列的逆序对数. 思路 #include <cstdio> #include <c ...

  8. C# Path 有关于文件路径获取的问题 的方法

    string Current = Directory.GetCurrentDirectory();//获取当前根目录 //private string strFilePath = Applicatio ...

  9. python统计ES存储空间占用的代码

    import os from os.path import join, getsize def get_dir_size(dir, suffix_filter=None): size = 0L if ...

  10. 套接字(socket)与socket 编程

    字节序: 主机字节序(host byte order):不同的主机有不同的字节序,x86:小端: 网络字节序(network byte order):大端字节序: 0. 什么是套接字 套接字是网络进程 ...