在网上某篇神奇的教程和@codesonic 大佬的标程帮助下,我又肝完了Leafy Tree,跑过来写篇题解(好像以前写过一篇?)


什么是Leafy Tree?

Leafy Tree由两种节点组成:辅助节点与叶子节点。

叶子节点储存值,而辅助节点储存左右孩子中大的那个值。

注意:辅助节点必定有两个孩子。

操作如何实现?

拿插入操作举例:

一路向下递归,每次拿左子树最大值与插入值作比较,如果大就往左,如果小就往右。

到底了就插入叶子与辅助。

然后再回溯更新。

这时候就会出一个问题:这个算法很容易被数据卡。

解决方案是引入平衡因子,在适当的时候重建这颗树。

重构方法可以拍扁也可以旋转。

拍扁的方法就是中序遍历一遍然后重新建树(具体可以参考这里),旋转的一会儿会讲。


工具函数

这里是一些简单的重要的工具函数。

  1. 新建节点
inline void newNode(int &pos,int v){
pos=++cnt,size[pos]=1,val[pos]=v;
}

cnt是总结点个数,size是子树大小,val是值(废话)。

  1. 复制节点
inline void copyNode(int x,int y){
size[x]=size[y],ls[x]=ls[y],rs[x]=rs[y],val[x]=val[y];
}

没什么好说的

  1. 合并节点
void merge(int l,int r){
size[++cnt]=size[l]+size[r],val[cnt]=val[r],ls[cnt]=l,rs[cnt]=r;
}
  1. 旋转
void rotate(int pos,bool flag){
if(flag){
merge(ls[pos],ls[rs[pos]]);
ls[pos]=cnt,rs[pos]=rs[rs[pos]];
}else{
merge(rs[ls[pos]],rs[pos]);
rs[pos]=cnt,ls[pos]=ls[ls[pos]];
}
}

这是重建依赖的旋转函数,左旋右旋看flag。

具体流程没什么好讲的,可以参考splay的左旋与右旋。

  1. 重建
void maintain(int pos){
if(size[ls[pos]]>size[rs[pos]]*alpha)rotate(pos,0);
else if(size[rs[pos]]>size[ls[pos]]*alpha)rotate(pos,1);
if(size[ls[pos]]>size[rs[pos]]*alpha)rotate(ls[pos],1),rotate(pos,0);
else if(size[rs[pos]]>size[ls[pos]]*alpha)rotate(rs[pos],0),rotate(pos,1);
}

这是重建函数,平衡因子就这题而言取4应该是最快的。


插入操作

void insert(int pos,int v){
if(size[pos]==1){
newNode(ls[pos],min(v,val[pos]));
newNode(rs[pos],max(v,val[pos]));
pushup(pos);
return;
}
if(v>val[ls[pos]])insert(rs[pos],v);
else insert(ls[pos],v);
pushup(pos);
maintain(pos);
}

思路就是之前讲的一路向下递归。

当子树大小为1的时候(到头了)就在底下新建两个节点,一个叶子一个辅助,然后回溯更新。

如果没到头的话就继续递归,然后递归完了就维护一下左右子树的平衡,看看需不需要重建。


删除操作

void erase(int pos,int v){
if(size[pos]==1){
if(ls[father]==pos)copyNode(father,rs[father]);
else copyNode(father,ls[father]);
return;
}
father=pos;
if(v>val[ls[pos]])erase(rs[pos],v);
else erase(ls[pos],v);
pushup(pos);
maintain(pos);
}

删除操作的思路和插入操作一样,一路向下。

需要说明的是father是我们记录的父亲(也可以不这样而是通过传参解决)。


排名查询&排名对应数查询

int kth(int pos,int v){
if(size[pos]==v)return val[pos];
if(v>size[ls[pos]])return kth(rs[pos],v-size[ls[pos]]);
return kth(ls[pos],v);
}
int rank(int pos,int v){
if(size[pos]==1)return 1;
if(v>val[ls[pos]])return rank(rs[pos],v)+size[ls[pos]];
return rank(ls[pos],v);
}

这两个。。。写什么平衡树都会用到肯定大家都会。


然后好像就结束了(Leafy Tree本来码量就不高)

不开O2不加读优大概是311ms左右(竟然还没有我替罪羊树快),应该是写丑了吧。。。

代码如下:

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=100100;
const int alpha=4;
int n,cnt,father,root;
int val[N<<2],size[N<<2],ls[N<<2],rs[N<<2];
inline void newNode(int &pos,int v){
pos=++cnt,size[pos]=1,val[pos]=v;
}
inline void copyNode(int x,int y){
size[x]=size[y],ls[x]=ls[y],rs[x]=rs[y],val[x]=val[y];
}
void merge(int l,int r){
size[++cnt]=size[l]+size[r],val[cnt]=val[r],ls[cnt]=l,rs[cnt]=r;
}
void rotate(int pos,bool flag){
if(flag){
merge(ls[pos],ls[rs[pos]]);
ls[pos]=cnt,rs[pos]=rs[rs[pos]];
}else{
merge(rs[ls[pos]],rs[pos]);
rs[pos]=cnt,ls[pos]=ls[ls[pos]];
}
}
void maintain(int pos){
if(size[ls[pos]]>size[rs[pos]]*alpha)rotate(pos,0);
else if(size[rs[pos]]>size[ls[pos]]*alpha)rotate(pos,1);
if(size[ls[pos]]>size[rs[pos]]*alpha)rotate(ls[pos],1),rotate(pos,0);
else if(size[rs[pos]]>size[ls[pos]]*alpha)rotate(rs[pos],0),rotate(pos,1);
}
void pushup(int pos){
if(!size[ls[pos]])return;
size[pos]=size[ls[pos]]+size[rs[pos]];
val[pos]=val[rs[pos]];
}
void insert(int pos,int v){
if(size[pos]==1){
newNode(ls[pos],min(v,val[pos]));
newNode(rs[pos],max(v,val[pos]));
pushup(pos);
return;
}
if(v>val[ls[pos]])insert(rs[pos],v);
else insert(ls[pos],v);
pushup(pos);
maintain(pos);
}
void erase(int pos,int v){
if(size[pos]==1){
if(ls[father]==pos)copyNode(father,rs[father]);
else copyNode(father,ls[father]);
return;
}
father=pos;
if(v>val[ls[pos]])erase(rs[pos],v);
else erase(ls[pos],v);
pushup(pos);
maintain(pos);
}
int kth(int pos,int v){
if(size[pos]==v)return val[pos];
if(v>size[ls[pos]])return kth(rs[pos],v-size[ls[pos]]);
return kth(ls[pos],v);
}
int rank(int pos,int v){
if(size[pos]==1)return 1;
if(v>val[ls[pos]])return rank(rs[pos],v)+size[ls[pos]];
return rank(ls[pos],v);
}
int main(){
scanf("%d",&n);
newNode(root,2147483647);
while(n--){
int s,a;
scanf("%d%d",&s,&a);
if(s==1)insert(root,a);
if(s==2)erase(root,a);
if(s==3)printf("%d\n",rank(root,a));
if(s==4)printf("%d\n",kth(root,a));
if(s==5)printf("%d\n",kth(root,rank(root,a)-1));
if(s==6)printf("%d\n",kth(root,rank(root,a+1)));
}
}

题解 P3369 【【模板】普通平衡树】的更多相关文章

  1. luoguP3391[模板]文艺平衡树(Splay) 题解

    链接一下题目:luoguP3391[模板]文艺平衡树(Splay) 平衡树解析 这里的Splay维护的显然不再是权值排序 现在按照的是序列中的编号排序(不过在这道题目里面就是权值诶...) 那么,继续 ...

  2. luoguP3369[模板]普通平衡树(Treap/SBT) 题解

    链接一下题目:luoguP3369[模板]普通平衡树(Treap/SBT) 平衡树解析 #include<iostream> #include<cstdlib> #includ ...

  3. 2021.07.02 P1383 高级打字机题解(可持久化平衡树)

    2021.07.02 P1383 高级打字机题解(可持久化平衡树) 分析: 从可以不断撤销并且查询不算撤销这一骚操作可以肯定这是要咱建一棵可持久化的树(我也只会建可持久化的树,当然,还有可持久化并查集 ...

  4. 【题解】二逼平衡树 [P3380] [BZOJ3196] [Tyvj1730]

    [题解]二逼平衡树 [P3380] [BZOJ3196] [Tyvj1730] 传送门:[模板]二逼平衡树(树套树)\([P3380]\) \([BZOJ3196]\) \([TYVJ1730]\) ...

  5. 题解 P3369 【【模板】普通平衡树(Treap/SBT)】

    STL真是个好东西. 最近在看pb_ds库及vector和set的用法,就想用这三种操作来实现一下普通平衡树,结果pb_ds中的rbtree不支持重复值,而本蒟蒻也看不懂不懂各大佬用pb_ds的实现, ...

  6. 【洛谷P3369】 (模板)普通平衡树

    https://www.luogu.org/problemnew/show/P3369 Splay模板 #include<iostream> #include<cstdio> ...

  7. [题解]bzoj 3223 文艺平衡树

    3223: Tyvj 1729 文艺平衡树 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3884  Solved: 2235[Submit][Sta ...

  8. [luogu3369/bzoj3224]普通平衡树(splay模板、平衡树初探)

    解题关键:splay模板题整理. 如何不加入极大极小值?(待思考) #include<cstdio> #include<cstring> #include<algorit ...

  9. 【模板】平衡树——Treap和Splay

    二叉搜索树($BST$):一棵带权二叉树,满足左子树的权值均小于根节点的权值,右子树的权值均大于根节点的权值.且左右子树也分别是二叉搜索树.(如下) $BST$的作用:维护一个有序数列,支持插入$x$ ...

随机推荐

  1. web自动化-selenium2入门讲解(mac版本)

    最近要做一个selenium2的分享,于是总结了下我用selenium2的感受,希望分享出来,可以对入门的小伙伴有一点帮助,也希望得到大佬的指教   一,环境搭建maven+selenium2+tes ...

  2. composer install或者update 出错

    composer install或者update  出错Your requirements could not be resolved to an installable set of package ...

  3. 洛谷P5238 整数校验器

    看到没有边读入边处理的,我来水一发 我们要看一下有那些情况是格式不合法的 单独的负号 -0(后面可以有其他数字) 0 +(后面一些数字) 我们用快速读入的方法 读取字符进行处理 还有可能超出范围的 考 ...

  4. C 语言中函数的跳转

    1.同一个函数内,可以使用goto语句: eg: void  text_1( void ) { char i=0; a : i++; printf ( " text_1 = %d \r\n& ...

  5. Git学习总结(10)——git 常用命令汇总

    1.git 基本概念: 工作区:改动(增删文件和内容) 暂存区:输入命令:git add 改动的文件名,此次改动就放到了'暂存区'(新增的文件) 本地仓库(简称:本地):输入命令:git commit ...

  6. Mybatis动态代理实现函数调用

    如果我们要使用MyBatis进行数据库操作的话,大致要做两件事情: 1. 定义DAO接口 在DAO接口中定义需要进行的数据库操作. 2. 创建映射文件 当有了DAO接口后,还需要为该接口创建映射文件. ...

  7. soapUI 5.1.2 下载以及破解

    转:https://blog.csdn.net/weiqing723/article/details/78865734

  8. Linux 截图

    方法一:快捷键截图 对整个屏幕截图: PrintScreen 对活动窗体截图: Alt+PrintScreen 对随意矩形截图: Shift+PrintScreen 以上三个快捷键再加上Ctrl.就会 ...

  9. 面试-MySQL

    1  事务的特性 事务具有四个特性:原子性(Atomicity).一致性(Consistency).隔离性(Isolation)和持续性(Durability).这四个特性也简称ACID性. (1)原 ...

  10. 从头认识Spring-3.4 简单的AOP日志实现-扩展添加检查订单功能,以便记录并检測输入的參数

    这一章节我们再上一个章节的基础上加上一个检查订单功能 1.domain 蛋糕类: package com.raylee.my_new_spring.my_new_spring.ch03.topic_1 ...