caioj 1074 动态规划入门(中链式1:最小交换合并问题)
经典的石子合并问题!!!
设f[i][j]为从i到j的最大值
然后我们先枚举区间大小,然后枚举起点终点来更新
f[i][j] = min(f[i][k] + f[k+1][j] + sum(i, j));
最后f[1][n]就是答案!!
#include<cstdio>
#include<cstring>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std;
const int MAXN = 212;
int f[MAXN][MAXN], a[MAXN], s[MAXN], n;
int main()
{
int ans = 1e9;
scanf("%d", &n);
REP(i, 1, n + 1) scanf("%d", &a[i]);
REP(r, 1, n)
{
swap(a[r], a[r + 1]);
REP(i, 1, n + 1) s[i] = s[i-1] + a[i];
swap(a[r], a[r + 1]);
REP(d, 2, n + 1)
for(int st = 1; st + d - 1 <= n; st++)
{
int i = st, j = st + d - 1;
f[i][j] = 1e9;
REP(k, i, j)
f[i][j] = min(f[i][j], f[i][k] + f[k+1][j] + (s[j] - s[i-1]));
}
ans = min(ans, f[1][n]);
}
printf("%d\n", ans);
return 0;
}
caioj 1074 动态规划入门(中链式1:最小交换合并问题)的更多相关文章
- 简谈 JavaScript、Java 中链式方法调用大致实现原理
相信,在 JavaScript .C# 中都见过不少链式方法调用,那么,其中实现该类链式调用原理,大家有没有仔细思考过?其中 JavaScript 类库:jQuery 中就存在大量例子,而在 C# 中 ...
- jquery中链式操作的this指向
jquery中链式操作是如何实现? 例如:$(obj).children().css('color','red').next().css('color','red').siblings().css(' ...
- caioj 1075 动态规划入门(中链式2:能量项链)(中链式dp总结)
我又总结了一种动归模型-- 这道题和上一道题很类似,都是给一个序列,然后相邻的元素可以合并 然后合并后的元素可以再次合并 那么就可以用这两道题类似的方法解决 简单来说就是枚举区间,然后枚举断点 加上断 ...
- caioj 1076 动态规划入门(中链式3:最大的算式)
一开始写了一个复杂度很大的方法,然后还过了(千万记得开longlong ) #include<cstdio> #include<cstring> #include<alg ...
- caioj 1079 动态规划入门(非常规DP3:钓鱼)(动规中的坑)
这道题写了我好久, 交上去90分,就是死活AC不了 后来发现我写的程序有根本性的错误,90分只是数据弱 #include<cstdio> #include<algorithm> ...
- caioj 1080 动态规划入门(非常规DP4:乘电梯)(dp数组更新其他量)
我一开始是这么想的 注意这道题数组下标是从大到小推,不是一般的从小到大推 f[i]表示从最高层h到第i层所花的最短时间,答案为f[1] 那么显然 f[i] = f[j] + wait(j) + (j ...
- AnguarJS中链式的一种更合理写法
假设有这样的一个场景: 我们知道一个用户某次航班,抽象成一个departure,大致是: {userID : user.email,flightID : "UA_343223",d ...
- caioj 1082 动态规划入门(非常规DP6:火车票)
f[i]表示从起点到第i个车站的最小费用 f[i] = min(f[j] + dist(i, j)), j < i 动规中设置起点为0,其他为正无穷 (貌似不用开long long也可以) #i ...
- caioj 1078 动态规划入门(非常规DP2:不重叠线段)(状态定义问题)
我一开始想的是前i个区间的最大值 显然对于当前的区间,有不选和选两种情况 如果不选的话,就继承f[i-1] 如果选的话,找离当前区间最近的区间取最优 f[i] = max(f[i-1, f[j] + ...
随机推荐
- C#使用tesseract3.02识别验证码模拟登录
一.前言 使用tesseract3.02识别有验证码的网站 安装tesseract3.02 在VS nuget 搜索Tesseract即可. 二.项目结构图 三.项目主要代码 using System ...
- c#邮件发送服务
邮件发送服务 项目中会遇到定时给某人发送邮件的功能要求,这里是京东的一段代码,当然也是我同事找的,我记录学习一下,以免忘记. 这是解决方案 这里主要是工具:日志工具,链接数据库工具,发送邮件工具 这里 ...
- 1806最大数 string和sort函数用法
1.C++自带sort函数用法 sort函数有三个参数: (1)第一个是要排序的数组的起始地址 (2)第二个是结束的地址(最后一位要排序的地址) (3)第三个参数是排序的方法,可以是从大到小也可是从小 ...
- 编 写高性能的 SQL 语句注意事项
1. IS NULL 与 IS NOT NULL不能用 null 作索引, 任何包含 null 值的列都将不会被包含在索引中. 即使索引有多列这样的情况下,只要这些列中有一列含有 null,该列就会从 ...
- 3DS MAX玩家必看!70个提高渲染速度的小技巧
3DS MAX玩家必看!70个提高渲染速度的小技巧 (注:节省RAM不一定会加快渲染速度.请同学们根据实际情况加以利用.) 1. 尽量限制Ploygon数量,越少渲染速度越快 2. 如果使用Vray, ...
- 洛谷 P3203 [HNOI2010]弹飞绵羊 分块
我们只需将序列分成 n\sqrt{n}n 块,对于每一个点维护一个 val[i]val[i]val[i],to[i]to[i]to[i],分别代表该点跳到下一个块所需要的代价以及会跳到的节点编号.在 ...
- Java XSSF 导出excel 工具类
参数解释: title:导出excel标题.headers 导出到excel显示的列头. columns 对应数据库字段 .list 导出数据1.pox中添加依赖 <dependency> ...
- fwupdate-efi 与 grub2-common 冲突
在CentOS-7Minimal系统中使用命令如下命令yum groupinstall -y "GNOME Desktop"安装 图形界面时提示:fwupdate-efi 与 gr ...
- pandas 3 设置值
from __future__ import print_function import pandas as pd import numpy as np np.random.seed(1) dates ...
- [LeetCode] 155. minStack 设计最小栈
注意:getMin()时间复杂度为O(1) 最原始的方法: class MinStack(object): def __init__(self): """ initial ...